0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Представлен гибкий солнечный элемент с рекордным КПД для работы внутри помещений

Представлен гибкий солнечный элемент с рекордным КПД для работы внутри помещений

На первый взгляд идея размещения солнечных элементов в помещениях может показаться странной, но в этом есть смысл. Искусственное освещение достаточной интенсивности всегда сопровождает жизнь и деятельность человека. Зачем же пропадать добру? Новые рубежи эффективности на этом пути покорила сводная команда учёных из Италии, Колумбии и Германии. КПД новых преобразователей при слабом освещении удвоен, что стало новым рекордом в отрасли.

Образец перспективного гибкого фотоэлектрического преобразователя представила группа учёных из Университета Тор Вергата (государственный университет Италии), Южно-Колумбийского университета (Universidad Surcolombiana) и Института Фраунгофера. Данные об исследовании опубликованы в журнале Cell Reports Physical Science. В основе фотопреобразователя лежит популярный среди исследователей «российский» минерал перовскит.

Следует подчеркнуть, что рекордное значение КПД солнечного элемента для искусственного освещения заявлено для решений на гибкой подложке. Представленный экспериментальный элемент на перовските и тончайшей подложке из стекла с покрытием из оксида индия и олова (ITO) показал КПД на уровне 20,6 % при светодиодном освещении интенсивностью 200 люкс и 22,6 % при интенсивности 400 люкс. Предыдущие разработки аналогичного назначения показывали КПД до 10 % при низкой интенсивности освещения (источник не указывает абсолютные значения) и 26,1 % при освещении 1000 люкс.

Яркость настольного искусственного освещения для тонких работ обычно не превышает 500 люкс. Тем самым новая разработка отвечает заданным критериям самым лучшим образом из существующих предложений. Этих мощностей будет недостаточно для электропитания даже сравнительно слабых потребителей энергии типа носимой электроники в виде фитнес-браслетов или вроде того. Например, с одного см2 новый элемент при освещении 400 люкс добывает всего 35 мкВт, а при освещении 100 люкс ― 16,7 мкВт. Но этого питания хватит для маломощных датчиков и чего-то из разряда умных вещей с подключением к Интернету. К тому же можно ожидать, что на этом исследования не завершатся и мы увидим дальнейшее развитие предложенной технологии.

Созданы солнечные батареи с максимальным КПД

Ученые Национальной лаборатории по изучению возобновляемой энергии (США) разработали солнечные батареи с максимальным на сегодняшний момент КПД. Он составляет 39,2 процента при естественной освещенности солнцем, и при концентрированном солнечном свете — более 47 процентов. Оба показателя побили мировой рекорд для солнечных батарей. Сообщение об этом появилось в издании Nature Energy.

Такого эффекта разработчикам удалось достигнуть за счет инновационной конструкции пластин. Фотоэлемент представляет собой слоеный пирог из шести слоев, каждый их которых изготовлен из отдельного материала. Это фосфид алюминия-галлия-индия, арсенид алюминия-галлия, арсенид галлия и три разновидности арсенидов галлия-индия. Подобное разнообразие материалов позволяет использовать для выработки электричества фотоны с самой разной энергией.

Помимо этого, между слоями размещены прослойки вспомогательных веществ. В итоге всего в «слоеном пироге» 140 уровней. Любопытно, что сама батарея при этом втрое тоньше человеческого волоса.

Подобные фотоэлементы имеют высокую стоимость из-за сложности их производства. Однако авторы разработки имеют ответ и на этот вопрос. Стоимость, считают они, можно существенно снизить, если уменьшить площадь фотоэлемента. Сделать это можно, фокусируя свет с помощью вогнутых зеркал.

Читать еще:  Время, вперед: современные часы для дома и офиса

Подобная разработка имеет перспективное значение как для энергетики в целом, так и для космической промышленности. Сейчас в космических аппаратах используются кремниевые фотоэлементы, КПД которых составляет всего около 20 процентов. Поэтому на спутниках для выработки энергии применяются фотопанели большой площади. Новые компактные и эффективные батареи — будущее космической отрасли.

Кстати, уже изобретен фотоэлемент, устойчивый к космической радиации. КПД у него невысокий, 24,1 процента, но состав — перовскит, соединения меди, индия, галлия и селена придает устойчивость перед протонным облучением, что важно в условиях космоса для межпланетных зондов, не защищенным магнитным полем Земли.

Представлен гибкий солнечный элемент с рекордным КПД для работы внутри помещений

На первый взгляд идея размещения солнечных элементов в помещениях может показаться странной, но в этом есть смысл. Искусственное освещение достаточной интенсивности всегда сопровождает жизнь и деятельность человека. Зачем же пропадать добру? Новые рубежи эффективности на этом пути покорила сводная команда учёных из Италии, Колумбии и Германии. КПД новых преобразователей при слабом освещении удвоен, что стало новым рекордом в отрасли.

Образец перспективного гибкого фотоэлектрического преобразователя представила группа учёных из Университета Тор Вергата (государственный университет Италии), Южно-Колумбийского университета (Universidad Surcolombiana) и Института Фраунгофера. Данные об исследовании опубликованы в журнале Cell Reports Physical Science. В основе фотопреобразователя лежит популярный среди исследователей «российский» минерал перовскит.

Следует подчеркнуть, что рекордное значение КПД солнечного элемента для искусственного освещения заявлено для решений на гибкой подложке. Представленный экспериментальный элемент на перовските и тончайшей подложке из стекла с покрытием из оксида индия и олова (ITO) показал КПД на уровне 20,6 % при светодиодном освещении интенсивностью 200 люкс и 22,6 % при интенсивности 400 люкс. Предыдущие разработки аналогичного назначения показывали КПД до 10 % при низкой интенсивности освещения (источник не указывает абсолютные значения) и 26,1 % при освещении 1000 люкс.

Яркость настольного искусственного освещения для тонких работ обычно не превышает 500 люкс. Тем самым новая разработка отвечает заданным критериям самым лучшим образом из существующих предложений. Этих мощностей будет недостаточно для электропитания даже сравнительно слабых потребителей энергии типа носимой электроники в виде фитнес-браслетов или вроде того. Например, с одного см 2 новый элемент при освещении 400 люкс добывает всего 35 мкВт, а при освещении 100 люкс ― 16,7 мкВт. Но этого питания хватит для маломощных датчиков и чего-то из разряда умных вещей с подключением к Интернету. К тому же можно ожидать, что на этом исследования не завершатся и мы увидим дальнейшее развитие предложенной технологии.

Солнечные батареи с рекордным КПД

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, — они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Читать еще:  Удаляй с умом: софт для деинсталляции приложений

Процесс выращивания получился сложнее, чем это имеет место в традиционном производстве кремниевых батарей, однако производительность новых батарей удвоилась. К тому же расходы на создание системы с концентратором здесь ниже, чем при создании обычных солнечных батарей.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте – солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия – первый слой фотоэлемента, арсенид галлия – второй, арсенид индия-галлия – третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, — свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO – японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день – от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Представлен гибкий солнечный элемент с рекордным КПД для работы внутри помещений

12 мая, 2020 Технологии Комментариев 2

Следующее поколение Motorola razr получит Snapdragon 765 и поддержку 5G 25 мая, 2020
Redmi 1A Display — первый монитор суббренда Xiaomi, который может выйти 26 мая 25 мая, 2020
Huawei может первой выпустить смартфон с подэкранной фронтальной камерой 25 мая, 2020

На первый взгляд идея размещения солнечных элементов в помещениях может показаться странной, но в этом есть смысл. Искусственное освещение достаточной интенсивности всегда сопровождает жизнь и деятельность человека. Зачем же пропадать добру? Новые рубежи эффективности на этом пути покорила сводная команда учёных из Италии, Колумбии и Германии. КПД новых преобразователей при слабом освещении удвоен, что стало новым рекордом в отрасли.

Читать еще:  Слухи: Microsoft обсуждает покупку польской игровой студии

Образец перспективного гибкого фотоэлектрического преобразователя представила группа учёных из Университета Тор Вергата (государственный университет Италии), Южно-Колумбийского университета (Universidad Surcolombiana) и Института Фраунгофера. Данные об исследовании опубликованы в журнале Cell Reports Physical Science. В основе фотопреобразователя лежит популярный среди исследователей «российский» минерал перовскит.

Следует подчеркнуть, что рекордное значение КПД солнечного элемента для искусственного освещения заявлено для решений на гибкой подложке. Представленный экспериментальный элемент на перовските и тончайшей подложке из стекла с покрытием из оксида индия и олова (ITO) показал КПД на уровне 20,6 % при светодиодном освещении интенсивностью 200 люкс и 22,6 % при интенсивности 400 люкс. Предыдущие разработки аналогичного назначения показывали КПД до 10 % при низкой интенсивности освещения (источник не указывает абсолютные значения) и 26,1 % при освещении 1000 люкс.

Яркость настольного искусственного освещения для тонких работ обычно не превышает 500 люкс. Тем самым новая разработка отвечает заданным критериям самым лучшим образом из существующих предложений. Этих мощностей будет недостаточно для электропитания даже сравнительно слабых потребителей энергии типа носимой электроники в виде фитнес-браслетов или вроде того. Например, с одного см 2 новый элемент при освещении 400 люкс добывает всего 35 мкВт, а при освещении 100 люкс ― 16,7 мкВт. Но этого питания хватит для маломощных датчиков и чего-то из разряда умных вещей с подключением к Интернету. К тому же можно ожидать, что на этом исследования не завершатся и мы увидим дальнейшее развитие предложенной технологии.

Главное меню

На первый взгляд идея размещения солнечных элементов в помещениях может показаться странной, но в этом есть смысл. Искусственное освещение достаточной интенсивности всегда сопровождает жизнь и деятельность человека. Зачем же пропадать добру? Новые рубежи эффективности на этом пути покорила сводная команда учёных из Италии, Колумбии и Германии. КПД новых преобразователей при слабом освещении удвоен, что стало новым рекордом в отрасли.

Образец перспективного гибкого фотоэлектрического преобразователя представила группа учёных из Университета Тор Вергата (государственный университет Италии), Южно-Колумбийского университета (Universidad Surcolombiana) и Института Фраунгофера. Данные об исследовании опубликованы в журнале Cell Reports Physical Science. В основе фотопреобразователя лежит популярный среди исследователей «российский» минерал перовскит.

Следует подчеркнуть, что рекордное значение КПД солнечного элемента для искусственного освещения заявлено для решений на гибкой подложке. Представленный экспериментальный элемент на перовските и тончайшей подложке из стекла с покрытием из оксида индия и олова (ITO) показал КПД на уровне 20,6 % при светодиодном освещении интенсивностью 200 люкс и 22,6 % при интенсивности 400 люкс. Предыдущие разработки аналогичного назначения показывали КПД до 10 % при низкой интенсивности освещения (источник не указывает абсолютные значения) и 26,1 % при освещении 1000 люкс.

Яркость настольного искусственного освещения для тонких работ обычно не превышает 500 люкс. Тем самым новая разработка отвечает заданным критериям самым лучшим образом из существующих предложений. Этих мощностей будет недостаточно для электропитания даже сравнительно слабых потребителей энергии типа носимой электроники в виде фитнес-браслетов или вроде того. Например, с одного см2 новый элемент при освещении 400 люкс добывает всего 35 мкВт, а при освещении 100 люкс ― 16,7 мкВт. Но этого питания хватит для маломощных датчиков и чего-то из разряда умных вещей с подключением к Интернету. К тому же можно ожидать, что на этом исследования не завершатся и мы увидим дальнейшее развитие предложенной технологии.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector