6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое хорошо и что такое плохо, или FAQ по LCD-мониторам

FAQ по жидкокристаллическим (LCD) мониторам


Дополнительно были использованы материалы:
LCD мониторы по версии 2002 года с сайта 3Dnews.Ru
Тестирование LCD мониторов при покупке с сайта faq.ixbt.com


Arcanum &copy 02.08.2003
При цитировании ссылка на faqsite.narod.ru обязательна

Содержание

В:Какие преимущества и недостатки LCD мониторов?
О: В основном будем сравнивать с все еще привычными дисплеями на электронно-лучевой трубке (CRT).
Преимущества:

  • Абсолютно плоский экран. Абсолютно нет геометрических искажений.
  • Очень высокая четкость изображения. Проблемы фокусировки, сведения лучей оставим CRT мониторам.
  • Высокая яркость. Возможно даже слишком высокая.
  • Полностью незаметно мерцание.
  • Мало потребляют электроэнергии.
  • Отсутствие электромагнитных излучений.
  • Не подвержены влиянию магнитных полей.
  • Занимают мало места на рабочем столе

Недостатки:

  • Обязательно требуют проверки на «мертвые» пиксели при покупке.
  • Низкая контрастность изображения. Мало оттенков цвета.
  • Общее количество передаваемых цветов (гамма) достаточно мало. Заявления производителей о 24х битном цвете — рекламный трюк.
  • Очень низкая точность передачи цвета
  • Плохая работа не в «родном» разрешении.
  • Неоднородность яркости картинки. Часто на глаз заметно, что у края освещение сильнее.
  • Время отклика пикселя достаточно велико по сравнению с CRT. Часто это заметно на глаз в динамических приложениях (игры, фильмы. ).
  • Неравномерность яркости, заметнее при однородном фоне. Может не бросаться в глаза у дорогих моделей, но все же присутствует.
  • Маловат угол обзора. Если смотреть на дисплей не перпендикулярно экрану, то картинка постепенно темнеет.

В: Что такое мертвые пиксели?
О: Для пользователя — это бросающиеся в глаза, не меняющие свой цвет, точки на экране.
В зависимости от технологии изготовления матрицы дисплея, такие точки могут иметь как яркий, заметный цвет, так и быть черными.

Физически это означает, что в матрице сгорел транзистор, управляющий ячейкой, отвечающей за пиксель на экране.

По стандарту ISO допускается наличие 9 дефективных пикселей (горящих, не горящих) на один миллион пикселей матрицы (7 пикселей для 15″), что не является браком. Для конечного пользователя это, как минимум, может принести огорчение.

В:Какие существуют технологии производства панелей LCD?
О: На данный момент существуют следующие технологии изготовления панелей:

  • TN+Film
    Это самая самая простая и старая технология. Как следствие — невысокая цена. Недостатками являются сравнительно плохой угол обзора, невысокая контрастность, большое время реакции пикселя.
    Черный цвет у таких панелей недостаточно темный. К тому же, если вдруг имеются мертвые пиксели, то они очень заметны.
  • MVA
    Самое короткое время реакции пикселей из всех технологий. Хорошие углы обзора, достаточно точная передача цветов, глубокий черный цвет.
    Недостаток — пока высокая цена.
  • IPS
    Получше, чем TN+Film. Хороший угол обзора и черный цвет. Все еще большое время реакции пикселей.

В: Какую модель выбрать?
О: Первое, что нужно решить, для чего в основном будет использоваться дисплей. Для игр, или графики, или для работы с текстом, или просмотра фильмов.

Кроме того, выбор конечно еще и определяется ценой дисплея. Модели, хорошие по всем параметрам, стоят достаточно дорого. Как всегда, выбираем модель с лучшим соотношением цена/качество.

Главное, на что следует обратить внимание, как ни странно 😉 — качество изображения. Не поддавайтесь на рекламные уловки производителей о суперяркости, суперчеткости, супербезынерционности.

Практически все компании-производители LCD мониторов любят завышать реальные характеристики.
Просто зайдите в магазин — и смотрите. Правда в магазинах любят подключить множество дисплеев к одному компьютеру через разветвитель. Тут об оценке качества изображения говорить не приходится. Требуйте в конечном итоге подключения напрямую к отдельному компьютеру.

Если приглянулось качество изображения, обратите внимание на наличие дополнительных «наворотов», таких как: портретный режим, крепление на стену, USB-хаб и прочее.

Не стоит только всерьез за плюс считать наличие встроенных миниатюрных колоночек. Звук они дают, мягко говоря, не лучшего качества. Но если только не сверх дорого место на рабочем столе.

Ну а объективно, на выбор могут повлиять следующие параметры:

  • Угол обзора. Чем больше, тем лучше. Наиболее важен вертикальный угол обзора. Хорошо, если он больше 120°.
  • Высокая контрастность (не менее 300:1). Высокая яркость может быть и отрицательным фактором, если ее нельзя уменьшить до требуемой величины. Это может быть важно для тех, кто много работает в вечернее/ночное время.
  • Время реакции (отклика) пикселя. Складывается из времени включения и времени гашения. Пожалуй полное время реакции в 25мс вполне хороший показатель.
  • Наличие цифрового (DVI) входа существенно лишь для мониторов с диагональю от 17″.
  • Наличие портретного режима скорее всего необходимо лишь для работы в офисных приложениях. Также это несомненный плюс для мониторов с диагональю от 17″.

В:Как проверить LCD дисплей при покупке?
О: Примерный алгоритм проверки можно представить так:

  1. Захватить с собой:
    • Утилиту для проверки Nec Monitor Test.
    • Фильм/клип в DivX.
    • Динамичный шутер/демо.
    • Цифровую фотографию с хорошим качеством.
  2. Потребовать подключить дисплей к отдельному компьютеру, напрямую к хорошей (не интегрированной и не noname) видеокарте.
  3. Выставить в Windows частоту кадровой развертки в 60Гц.
  4. Выставить заводские настройки на мониторе.
  5. Проверить на мониторе частоту кадровой развертки. Должно быть 60Гц.
  6. Мертвые пиксели. Запустить тест баланс белого «White Balance». Устанавливая разный цвет фона, галочками в группе «Color», удостовериться в отсутствии каких-либо точек на экране для всех цветов фона.
    Дальнейшие проверки данного экземпляра бессмысленны при наличии мертвых пикселей.
  7. Четкость. Запустить тест муар «Moire». Выставить высокое разрешение в тесте. Подстроить фазу на дисплее до достижения максимальной четкости.
  8. Оттенки цвета. Вывести тестовую картинку «Test Picture». Обратить внимание на серые цвета, переходы между ними. Добиться серых тонов подстройкой цветовой температуры и каналов цвета в меню дисплея.
    Более точно оценить оттенки поможет мира. Она дает гораздо большее число оттенков серого.
  9. Контраст. Запустить тест «Color Spectrum». Смотреть на переходы цветов.
  10. Равномерность освещенности. Выберите в тесте баланс белого «White Balance». Установите черный фон, сняв все галочки в группе «Color». Не требуйте от сравнительно дешевых дисплеев высокой равномерности освещения.
  11. Углы обзора. Запустите тест проверки на читабельность «Readability». Убедитесь в хорошей читаемости по всему экрану, меняя угол обзора.
  12. Время отклика. Посмотрите на скроллинг текста в окне. Запустите какой-нибудь шутер. Смотрите за наличием шлейфов у движущихся объектов.
  13. Мультимедиа. Запустите фильм в DivX. Смотрите на артефакты, глубину черного. Посмотрите какую-нибудь фотографию.

Что такое хорошо и что такое плохо, или FAQ по LCD-мониторам

Довольно часто встречаются ситуации, когда человек собирается приобрести новый монитор, но не знает, какая именно модель ему необходима. Не каждый верит навязчивой рекламе, как и рекомендациям некоторых продавцов, которым хочется поскорее сбыть залежалый товар. Конечно, исключения бывают, но чрезвычайно редко. При выборе нового монитора приходится рассчитывать только на себя при поиске источников информации, заслуживающих доверия.

Но далеко не все готовы искать необходимую информацию в специализированных бумажных и интернет-изданиях. У потенциальных покупателей современных мониторов возникает множество вопросов, на которые FAQ поможет найти ответы.

Вопрос: Какие бывают типы матриц LCD-мониторов и в чем их отличие?

Ответ: Важнейшей частью LCD-монитора, которая целиком и полностью определяет качество его изображения, является матрица. Современные мониторы имеют матрицы основных трех типов:

TN или TN + film (Twisted Nematic + film) — самый старый и недорогой в производстве тип матриц, характеризующийся невысокой контрастностью, относительно скромной цветопередачей, минимальным временем отклика, небольшими углами обзора с видимым цветовым искажением при изменении, особенно по вертикали, угла наблюдения. Недостатки в качестве изображения современных TN матриц можно обнаружить лишь целенаправленно отыскивая их, так как технологии не стоят на месте. LCD-мониторы с матрицами типа TN идеально подходят для симуляторов, «стрелялок» (динамичных 3D-игр), для работы с офисными (чаще всего текстовыми) приложениями, а также для работы в Интернете. При групповом просмотре фильма будут сказываться ограниченные углы обзора, а в одиночестве его можно будет смотреть совершенно спокойно.

Наилучшей цветопередачей отличаются матрицы типа IPS (In-Plane Switching). Они обеспечивают углы обзора более 170°, которые при уменьшении угла наблюдения по вертикали и горизонтали почти без видимых цветовых искажений, а также среднюю, по современным меркам, контрастность. К сожалению, время реакции пикселей оставляет желать лучшего. На сегодняшнем рынке почти не встречаются классические матрицы типа IPS. На смену им пришли S-IPS матрицы с небольшим временем реакции, которые используют технологию Overdrive. По данному параметру S-IPS матрицы немного уступают матрицам типа TN. Довольно высокая, но не всегда оправданная цена — единственный недостаток S-IPS матриц. Именно поэтому для домашнего использования либо для профессиональной работы с графикой зачастую используются мониторы с S-IPS матрицами.

Широкими углами обзора (не хуже, чем у S-IPS), довольно качественной цветопередачей, высокой контрастностью и ценой (дороже, чем TN) характеризуются матрицы типа *VA: PVA (Patterned Vertical Alignment) и их разновидности, MVA (Multi-domain Vertical Alignment). По сравнению с IPS-технологиями их слабой стороной является наличие небольшого сдвига цвета (особенно в темных оттенках изображения) при отклонении от нормали к экрану. Данный эффект не очень заметен в современных матрицах S-PVA (Super PVA) и A-MVA (Advanced MVA). Матрицы данного типа (при совокупности своих параметров) могут стать отличным компромиссным решением в качестве универсального домашнего монитора. Они занимают промежуточное положение между дешевыми моделями типа TN с дополненной технологией Overdrive, без которой *VA мониторы непригодны для динамичных игр, и чересчур дорогими и высококачественными S-IPS матрицами.

Вопрос: Что такое Overdrive?

Ответ: Overdrive — технология компенсации времени отклика LCD-матрицы (каждый производитель дает ей свое фирменное название) обеспечивает существенное ускорение переключения пикселей. То, что при переходе от «черного» к «белому» время реакции пикселя немного меньше, чем при переходе между двумя градациями «серого» является характерной особенностью LCD-матриц любого типа. В первом случае на электроды пикселя подается максимальное напряжение, а скорость изменения состояния пикселя непосредственно зависит от напряжения, приложенного к нему.

В зависимости от информации о положении кристалла в предыдущем кадре, в подаче точно рассчитанных импульсов напряжения, так называемых «разгонных», для каждого нового значения пикселя в следующем кадре заключается суть технологии Overdrive. Кристаллы намного быстрее поворачиваются в необходимое положение, так как величина импульса ощутимо превышает номинальное напряжение, необходимое для требуемого состояния, и которое подается после него.

Данная технология способствует существенному поднятию средней «скорости» вывода изображения на экран монитора, но считать ее панацеей нельзя, так как она имеет некоторые негативные моменты: при воспроизведении динамичных сцен может появляться светлое мерцание на темно-серых поверхностях (артефакты), а также требуется некоторое усложнение электроники монитора.

Во всяком случае, стопроцентного Overdrive не бывает, так как здесь все зависит от тщательности проработки алгоритмов «разгона» определенными производителями, в результате чего погрешностей в изображении становится меньше (в процессе совершенствования технологии).

Вопрос: Что собой представляет «битый пиксель»?

Ответ: Красный, синий и зеленый цвета — регулируемые заслонки на пути света. Они являются тремя основными субпикселями, из которых состоит каждый пиксель LCD-монитора. В некоторых случаях эти «заслонки» (в открытом или закрытом состояниях) «залипают», и выходят из строя. Соответственно, дефектным или битым пикселем называется постоянно затухающая или постоянно светящаяся точка на экране.

В зависимости от экранных размеров определяется предельно допустимое количество дефектных пикселей в международном стандарте ISO 13406-2. У LCD-мониторов стандартом определяется четыре класса качества. 4 — самый низкий класс, допускающий на миллион работающих пикселей наличие до 262 дефектных. 1 — это самый высокий класс, который абсолютно не допускает наличия дефектных пикселей.

В нынешнее время мониторы четвертого класса почти не выпускаются. Второму классу соответствует большая часть современных непрофессиональных ЖК-мониторов. До семи синих, зеленых или красных светящихся субпикселей (в общей сложности, до 13 дефектных пикселей) и по три постоянно светящихся или постоянно выключенных дефектных пикселя являются допустимой нормой для мониторов, пользующихся наибольшей популярностью (17 и 19) с разрешением 1280 x 1024.

Зачастую именно в первые дни использования «свежекупленного» монитора проявляются «битые пиксели», наличие которых нельзя назвать поводом для предъявления определенных претензий при их количестве, не превышающем нормы стандарта ISO 13406-2.

Вопрос: Как обозначается «разрешение дисплея » и что это такое?

Ответ: Общее количество пикселей, которыое формируют изображение, называется разрешением любого дисплея. Изображение с разрешением 1280 х 1024 означает, что в него входит по 1280 точек в каждой из 1024 строк. Разумеется, изображение получается более четким при более высоком разрешении. Сейчас не существует официальных стандартов обозначения разрешений дисплеев, но сложилась полуофициальная система подобных наименований, которая с успехом развивается (таблица 1).

Что такое хорошо и что такое плохо, или
FAQ по LCD-мониторам

Вы собираетесь приобрести новый монитор, но не знаете, какую именно модель Вам выбрать. Ситуация, согласитесь, встречается сплошь и рядом. Навязчивой рекламе веры особой нет, как, впрочем, и рекомендациям продавцов (исключения бывают, но очень редко), частенько стремящихся поскорее сбыть залежалый товар. Словом, в таком важном деле, как выбор нового монитора, рассчитывать приходится исключительно на себя и заслуживающие доверия источники информации.

Впрочем, далеко не все готовы в поисках нужной информации «перелопачивать» груды специализированных бумажных и интернет-изданий. Что ж, особой беды в том нет — в предлагаемом вашему вниманию FAQ можно найти ответы на многие вопросы, встающих перед потенциальными покупателями современных мониторов.

Вопрос: Какие бывают типы матриц LCD-мониторов и чем они отличаются друг от друга?

Ответ: Матрица — важнейшая часть LCD-монитора, целиком и полностью определяющая качество его изображения. Современные мониторы имеют матрицы трех основных типов:

  1. TN + film (Twisted Nematic + film), или просто TN — самый старый и недорогой в производстве тип матриц, характеризуется минимальным временем отклика, относительно скромной цветопередачей, небольшими углами обзора с заметным искажением цветов при изменении угла наблюдения (особенно по вертикали), а также невысокой контрастностью. Впрочем, технологии не стоят на месте, и изъяны в качестве изображения современных TN матриц можно обнаружить, только специально отыскивая их. LCD-мониторы с матрицами типа TN хорошо подходят для работы в интернете, с офисными приложениями (преимущественно — текстовыми), для динамичных 3D-игр («стрелялки», симуляторы). Можно на них смотреть и фильмы, но только в одиночестве — при групповом просмотре будут сказываться ограниченные углы обзора.
  2. IPS (In-Plane Switching) матрицы отличаются наилучшей цветопередачей, обеспечивают среднюю (по современным меркам) контрастность, углы обзора свыше 170° (практически без видимых искажений цветов при уменьшении угла наблюдения, причем как по горизонтали, так и по вертикали), тогда как время реакции пикселей у них оставляет желать лучшего. Однако в настоящее время классические матрицы типа IPS на рынке практически не встречаются, их сменили S-IPS матрицы с относительно малым временем реакции, использующие технологию Overdrive (о ней — ниже), если и уступающие по этому параметру матрицам типа TN, то самую малость. Таким образом, у S-IPS матриц остался только один недостаток — достаточно высокая, далеко не всегда оправданная, цена. Исходя из этого мониторы с S-IPS матрицами позиционируются, в основном, для профессиональной работы с графикой или как престижные модели для домашнего использования.
  3. Матрицы типа *VA (MVA — Multi-domain Vertical Alignment, PVA — Patterned Vertical Alignment и их разновидности) характеризуются высокой контрастностью, достаточно хорошей цветопередачей, широкими углами обзора (не хуже, чем у S-IPS), но по цене обходятся дороже, чем TN. Слабой их стороной, в сравнении с IPS-технологиями, является наличие небольшого цветового сдвига при отклонении от нормали к экрану, особенно в темных оттенках изображения. В современных матрицах A-MVA (Advanced MVA) и S-PVA (Super PVA) данный эффект менее заметен, но окончательно не изжит. По совокупности своих параметров матрицы этого типа занимают промежуточное положение между высококачественными, но слишком дорогими S-IPS матрицами и дешевыми середнячками типа TN и, дополненные технологией Overdrive (без нее *VA мониторы практически непригодны для динамичных игр), могут стать хорошим компромиссным решением в качестве универсального домашнего монитора.

Вопрос: Что такое Overdrive?

Ответ: Технология компенсации времени отклика LCD-матрицы, известная как Overdrive (у каждого производителя она имеет свое фирменное название) обеспечивает существенное ускорение переключения пикселей. Характерной особенностью LCD-матриц любого типа является то, что при переходе от «черного» к «белому» время реакции пикселя гораздо меньше, чем, например, при переходе между двумя градациями «серого». Почему? Потому, что скорость изменения состояния пикселя напрямую зависит от приложенного к нему напряжения, а в первом случае на электроды пикселя подается максимальное напряжение.

Суть технологии Overdrive заключается в подаче точно рассчитанных (исходя из информации о положения кристалла в предыдущем кадре) так называемых «разгонных» импульсов напряжения для каждого нового значения пиксела в следующем кадре. Величина импульса значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, поэтому кристаллы поворачиваются в нужное положение гораздо быстрее.

Данная технология позволяет значительно поднять среднюю «скорость» вывода изображения на экран монитора, однако она привносит и ряд негативных моментов, что не позволяет считать ее панацеей. Во-первых, Overdrive требует усложнения электроники монитора но, самое неприятное, иногда могут появляться артефакты (светлое мерцание на темно-серых поверхностях) при воспроизведении динамичных сцен.

В любом случае, идеального «овердрайва» на 100% без ошибок не бывает, но здесь все зависит от тщательности проработки алгоритмов «разгона» конкретными производителями и в процессе совершенствования технологии количество огрехов изображения стремится к нулю.

Вопрос: Что такое «битый пиксель»?

Ответ: Каждый пиксель LCD-монитора состоит из трех субпикселей зеленого, синего и красного цветов, которые, грубо говоря, являются регулируемыми заслонками на пути света. Иногда эти «заслонки» выходят из строя («залипают» в закрытом или открытом состояниях). В результате мы имеем постоянно светящуюся (или наоборот, постоянно потухшую) точку на экране — это и есть дефектный (или, по простому, битый) пиксель.

Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2. Стандарт определяет 4 класса качества LCD-мониторов. Самый высокий класс — 1, вообще не допускает наличия дефектных пикселей. Самый низкий класс — 4, допускает наличие до 262 (просто ужас!) дефектных пикселей на миллион работающих.

К счастью, сегодня мониторы класса 4 практически не выпускаются. Подавляющее большинство современных непрофессиональных ЖК-мониторов соответствуют классу 2. Так, для наиболее популярных 17″ и 19″ мониторов (имеющих разрешение 1280 x 1024) допустимой нормой является по 3 дефектных пикселя (постоянно выключенных или постоянно светящихся) и до 7 светящихся красных, зеленых или синих субпикселей (всего — до 13 дефектных пикселей).

Чаще всего «битые пиксели» проявляются в первые дни использования «свежекупленного» монитора и, если их количество не превышает нормы стандарта ISO 13406-2, их наличие не является поводом для предъявления каких-либо претензий.

Вопрос: Что такое «разрешение дисплея» и как оно обозначается?

Ответ: Разрешение любого дисплея — это полное количество пикселей, формирующих изображение. Например, разрешение 1280 х 1024 означает, что изображение состоит из 1024 строк по 1280 точек в каждой. Чем выше разрешение, тем, естественно, более четким получается изображение. Сегодня каких-либо официальных стандартов обозначения разрешений дисплеев не существует, однако сложилась и успешно развивается полуофициальная система подобных наименований (таблица 1).

FAQ по мониторам, с точки зрения безопасности для здоровья

Вопросы относительно безопасности мониторов достаточно однотипны, впрочем, также, как и те или иные возмущения по поводу терминов и понятий, поэтому я решил составить небольшой FAQ.

1. У меня монитор такой-то, стандарт у него такой-то. Скажите, он хороший, он безопасен?

Для того чтобы оценить, безопасен ваш монитор или нет, достаточно достать его технический паспорт и посмотреть, каким стандартам соответствует монитор. Если таких стандартов нет, то это не означает, что ваш монитор плохой. Это всего лишь означает, что никто не знает, какой это монитор в отношении влияния на здоровье. Хорошо, если монитор соответствует какому-либо стандарту по электромагнитной безопасности — MPRII или соответствующим требованиям TCO’92. Если паспорт от монитора утерян, но вы знаете имя производителя и модель, то можно поискать сведения о нем в базе TCO.

2. «Прочитал вашу статью. Выбираю монитор. Скажите какой выбрать…»

Если для вас не имеет значения, какой монитор стоит на вашем столе, и важно лишь то, чтобы он был с высокой долей вероятности минимально вреден для здоровья, то покупайте любой дисплей со стандартом ТСО’99. Это самый безопасный монитор с точки зрения электромагнитных излучений. Так как в ТСО входят и эргономические параметры, поэтому для среднестатической нагрузки среднестатического пользователя эти мониторы вполне приемлемы.

3. Назовите самых лучших производителей мониторов.

С точки зрения безопасности для здоровья таких производителей нет. Существуют стандарты, которым могут следовать или не следовать производители и покупатели. Одназначно говорить, что тот или иной монитор более вреден для здоровья невозможно, так как сам по себе вред электромагнитного поля сверхнизкой частоты полностью не доказан. Эргономические параметры «на глазок» определить нельзя. Для одного человека некоторые марки мониторов являются приемлемыми, для других же абсолютно не годятся. Во многом это зависит от вида и длительности работы, освещения в помещении, состояния зрения пользователя и др.

4. Что такое излучение, что такое радиация, что такое электромагнитное поле, radiation?

Термины излучение, лучеиспускание и радиация являются синонимами (от лат. radius — луч). В некоторых профессиональных кругах (впрочем, часто и в быту) под термином «радиация» понимается ионизирующее излучение. Примерно также часто под термином «электромагнитная радиация» в народе и среди врачей часто понимается неионизирующее излучение. На самом деле, к электромагнитной радиации относится и «свет» и «рентгеновское излучение», и «электромагнитное поле». Все это электромагнитные излучения. По свойствам вызывать ионизацию решили разделить их на ионизирующие (потенциально опасные для человека) и неионизирующие (вероятно, опасные для человека, вред не доказан).

5. Вы пишете, что лучше использовать белый фон и черные знаки. Вы неправы, потому что при черном фоне и белых знаках излучение меньше.

От цвета используемого вами фона уровень электромагнитного поля сверхнизкой частоты мало зависит. А вот от четкости изображения может зависеть уровень электрической составляющей электромагнитного поля (см.ниже). Безусловно, что световое излучение при черном фоне будет меньше, однако о вреде этого вида излучения никто и никогда не говорил, хотя оно тоже относится к электромагнитным волнам. Еще раз напомню, что монитор является источником многих видов излучений — рентгеновского, светового, бета-излучения (электроны), электромагнитного поля сверхнизкой частоты. Первые из них минимальны в современных электронно-лучевых трубках, применямых в телевизорах и мониторах (выпущенных с 70-го года), и вред их при том уровне, который исходит от монитора, не доказан и вряд ли будет доказан. А вот вокруг электромагнитного поля сверхнизкой частоты и разгорелись научные споры, так как это поле не обладает такими «быстрыми и очевидными» вредными эффектами, как ионизирующее излучения, однако и доказать полную безвредность также не удается.

С эргономической точки зрения лучше использовать белый (имеется в виду серый фон, стандартный для Windows-приложений) и черные буквы. Однако, если у вас есть определенные пристрастия, и вы чувствуете, что эта комбинация цветов вам не подходит, то не стоит себя перестраивать. Универсальных советов не бывает, к сожалению.

В «PC Week» № 4 (226) 2000 г. опубликована статья под авторством Анатолия Ивановича Афанасьева ( гл.инженер ГНПП «Циклон-Тест», Академик Академии проблем качества РФ.). В работе приводятся данные, о том, что в реальных условиях эксплуатации монитора электрические поля могут быть выше, чем при тестировании. Так, в исследовании было показано, что при использовании стандартных сертификационных условий (экран заполнен буквой М), что монитор может соответствовать нормам, а при использовании реальных условий — работа с окнами, просмотр картинок — может возникать несоответствие. Таким образом, если вы хотите обезопасить себя от электрической составляющей электромагнитного поля, а исследования («PC Week» № 4 (226) 2000 г.) показывают, что уровень электрической составляющей может выходить за пределы допустимых норм, то надо использовать соответствующий защитный фильтр. Выбор фильтра — тема для отдельного исследования и статьи.

6. Помогают ли защитные фильтры (экраны) от электромагнитных излучений? Надо ли использовать защитные фильтры?

Защитные фильтры (экраны) могут снижать уровень переменного электрического поля до величин, которые часто намного ниже установленных в ТСО. Однако защитные фильтры не снижают уровня магнитной составляющей электромагнитного поля сверхнизкой частоты.

Эргономические параметры фильтры могут улучшать, например, контрастность (однако яркость при этом может снижена). Самым главным достоинством защитных экранов являются их антибликовые свойства. Блики, даже при самых лучших эргономических стандартах, могут приводить к усталости глаз.

Доводом в пользу использования защитных фильтров могут быть некоторые исследования ( Анисимов В.Н., Забежинский М.А., Попович И.Г. и др. Влияние излучений, создаваемых видеотерминалом персонального компьютера, на канцерогенез легких, индуцируемый уретаном у мышей, Впоросы Онкологии, 1996, том 42, №1, стр.77-81). В данном исследовании было доказано, что защитный фильтр (использовался Ergostar G-14) снижает усиливающее канцерогенез влияние электромагнитного поля монитора (указано, что использовался «видеотерминал персонального компьютера EGA/РС/АТ-286). Работа была частично поддержана грантом Минздравмедпрома РФ, грантов 02.03.03ф Министерства науки РФ по направлению «Онкологические болезни» ГНТП «Национальные приоритеты в медицине и здравоохранении» и грантом 019/93 ТОО «ERIMEX», Санкт-Петербург.

7. Электроны, воздействуя на люминофор, вредят здоровью…

Что касается электронов, которые воздействуют на люминофор, то даже если они и «вылетают» за пределы монитора, то опасности для человека не представляют. При существующих параметрах электронно-лучевых трубок электроны не могут проникнуть глубже поверхностных слоев кожи.

8. Существуют ли стандарты по безопасности для системных блоков?

В ТСО’99 стандартизации подлежат (обязательной или в порядке рекомендации для производителей) все компоненты компьютера. Однако, учитывая тот факт, что системный блок является источником электромагнитного поля сверхнизкой частоты в значительно меньшем объеме, по сравнению с монитором, то обычно про системные блоки речь не заходит.

Что касается других приборов — факсов, копиров, электроодеял, бритв и проч. офисной и бытовой техники, то ТСО также вводит стандарты для этих вещей. Кстати говоря, факсы и копиры при работе являются источниками более мощного электромагнитного поля сверхнизкой частоты.

Еще одной проблемой являются внешние электромагнитные поля. Так, в помещениях, где проложены электрические кабели, работают устройства, являющиеся источниками электромагнитных полей, может возникать нестабильность изображения (поднесите работащий телефон к экрану — во всяком случае мой Nokia (DAMPS) запросто это делает), что, в свою очередь, может влиять на здоровье. В ТСО регламентируется устойчивость изображения на экране монитора к внешним электромагнитным полям. Однако, что касается реальных условий, то даже при соответствии монитора стандартам ТСО, внешние электромагнитные поля могут влиять на этот параметр. К сожалению, в России существует несоответствие между требованиям к электромагнитной безопасности в помещениях и к мониторам.

Пример (Муратов Е.И. Электрические и магнитные поля сверхнизкой частоты и их роль в развитии новообразований. Вопросы Онкологии, Том 42, №5, стр.13-21.)

Что такое хорошо и что такое плохо, или FAQ по LCD-мониторам

Впрочем, далеко не все готовы в поисках нужной информации «перелопачивать» груды специализированных бумажных и интернет-изданий. Что ж, особой беды в том нет — в предлагаемом вашему вниманию FAQ можно найти ответы на многие вопросы, встающих перед потенциальными покупателями современных мониторов.

Вопрос: Какие бывают типы матриц LCD-мониторов и чем они отличаются друг от друга?

Ответ: Матрица — важнейшая часть LCD-монитора, целиком и полностью определяющая качество его изображения. Современные мониторы имеют матрицы трех основных типов:

1. TN + film (Twisted Nematic + film), или просто TN — самый старый и недорогой в производстве тип матриц, характеризуется минимальным временем отклика, относительно скромной цветопередачей, небольшими углами обзора с заметным искажением цветов при изменении угла наблюдения (особенно по вертикали), а также невысокой контрастностью. Впрочем, технологии не стоят на месте, и изъяны в качестве изображения современных TN матриц можно обнаружить, только специально отыскивая их. LCD-мониторы с матрицами типа TN хорошо подходят для работы в интернете, с офисными приложениями (преимущественно — текстовыми), для динамичных 3D-игр («стрелялки», симуляторы). Можно на них смотреть и фильмы, но только в одиночестве — при групповом просмотре будут сказываться ограниченные углы обзора.
2. IPS (In-Plane Switching) матрицы отличаются наилучшей цветопередачей, обеспечивают среднюю (по современным меркам) контрастность, углы обзора свыше 170° (практически без видимых искажений цветов при уменьшении угла наблюдения, причем как по горизонтали, так и по вертикали), тогда как время реакции пикселей у них оставляет желать лучшего. Однако в настоящее время классические матрицы типа IPS на рынке практически не встречаются, их сменили S-IPS матрицы с относительно малым временем реакции, использующие технологию Overdrive (о ней — ниже), если и уступающие по этому параметру матрицам типа TN, то самую малость. Таким образом, у S-IPS матриц остался только один недостаток — достаточно высокая, далеко не всегда оправданная, цена. Исходя из этого мониторы с S-IPS матрицами позиционируются, в основном, для профессиональной работы с графикой или как престижные модели для домашнего использования.
3. Матрицы типа *VA (MVA — Multi-domain Vertical Alignment, PVA — Patterned Vertical Alignment и их разновидности) характеризуются высокой контрастностью, достаточно хорошей цветопередачей, широкими углами обзора (не хуже, чем у S-IPS), но по цене обходятся дороже, чем TN. Слабой их стороной, в сравнении с IPS-технологиями, является наличие небольшого цветового сдвига при отклонении от нормали к экрану, особенно в темных оттенках изображения. В современных матрицах A-MVA (Advanced MVA) и S-PVA (Super PVA) данный эффект менее заметен, но окончательно не изжит. По совокупности своих параметров матрицы этого типа занимают промежуточное положение между высококачественными, но слишком дорогими S-IPS матрицами и дешевыми середнячками типа TN и, дополненные технологией Overdrive (без нее *VA мониторы практически непригодны для динамичных игр), могут стать хорошим компромиссным решением в качестве универсального домашнего монитора.

Вопрос: Что такое Overdrive?

Ответ: Технология компенсации времени отклика LCD-матрицы, известная как Overdrive (у каждого производителя она имеет свое фирменное название) обеспечивает существенное ускорение переключения пикселей. Характерной особенностью LCD-матриц любого типа является то, что при переходе от «черного» к «белому» время реакции пикселя гораздо меньше, чем, например, при переходе между двумя градациями «серого». Почему? Потому, что скорость изменения состояния пикселя напрямую зависит от приложенного к нему напряжения, а в первом случае на электроды пикселя подается максимальное напряжение.

Суть технологии Overdrive заключается в подаче точно рассчитанных (исходя из информации о положения кристалла в предыдущем кадре) так называемых «разгонных» импульсов напряжения для каждого нового значения пиксела в следующем кадре. Величина импульса значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, поэтому кристаллы поворачиваются в нужное положение гораздо быстрее.

Данная технология позволяет значительно поднять среднюю «скорость» вывода изображения на экран монитора, однако она привносит и ряд негативных моментов, что не позволяет считать ее панацеей. Во-первых, Overdrive требует усложнения электроники монитора но, самое неприятное, иногда могут появляться артефакты (светлое мерцание на темно-серых поверхностях) при воспроизведении динамичных сцен.

В любом случае, идеального «овердрайва» на 100% без ошибок не бывает, но здесь все зависит от тщательности проработки алгоритмов «разгона» конкретными производителями и в процессе совершенствования технологии количество огрехов изображения стремится к нулю.

Вопрос: Что такое «битый пиксель»?

Ответ: Каждый пиксель LCD-монитора состоит из трех субпикселей зеленого, синего и красного цветов, которые, грубо говоря, являются регулируемыми заслонками на пути света. Иногда эти «заслонки» выходят из строя («залипают» в закрытом или открытом состояниях). В результате мы имеем постоянно светящуюся (или наоборот, постоянно потухшую) точку на экране — это и есть дефектный (или, по простому, битый) пиксель.

Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2. Стандарт определяет 4 класса качества LCD-мониторов. Самый высокий класс — 1, вообще не допускает наличия дефектных пикселей. Самый низкий класс — 4, допускает наличие до 262 (просто ужас!) дефектных пикселей на миллион работающих.

К счастью, сегодня мониторы класса 4 практически не выпускаются. Подавляющее большинство современных непрофессиональных ЖК-мониторов соответствуют классу 2. Так, для наиболее популярных 17″ и 19″ мониторов (имеющих разрешение 1280 x 1024) допустимой нормой является по 3 дефектных пикселя (постоянно выключенных или постоянно светящихся) и до 7 светящихся красных, зеленых или синих субпикселей (всего — до 13 дефектных пикселей).

Чаще всего «битые пиксели» проявляются в первые дни использования «свежекупленного» монитора и, если их количество не превышает нормы стандарта ISO 13406-2, их наличие не является поводом для предъявления каких-либо претензий.

Вопрос: Что такое «разрешение дисплея» и как оно обозначается?

Ответ: Разрешение любого дисплея — это полное количество пикселей, формирующих изображение. Например, разрешение 1280 х 1024 означает, что изображение состоит из 1024 строк по 1280 точек в каждой. Чем выше разрешение, тем, естественно, более четким получается изображение. Сегодня каких-либо официальных стандартов обозначения разрешений дисплеев не существует, однако сложилась и успешно развивается полуофициальная система подобных наименований (таблица 1).

Вопрос: Что такое «размер пикселя» и как он влияет на качество изображения?

Ответ: Понятие «размер пикселя» (и обратная ему величина — количество пикселей на дюйм) напрямую связано с разрешением матрицы монитора — чем выше ее разрешение, тем меньше расстояние между соседними пикселями и, тем самым, выше четкость изображения.

Однако однозначно утверждать, что высокое разрешение матрицы — это хорошо, а низкое — плохо, не стоит, равно как и наоборот. Ведь с уменьшением визуальных размеров элементарных элементов внешнего оформления — различных графических элементов и, в особенности, системных шрифтов, в графических ОС увеличивается количество информации на площади дисплея, но и восприятие этой информации несколько усложняется, особенно для людей, имеющих проблемы со зрением или много работающих с текстом.

Поэтому при покупке нового монитора нужно отдавать себе отчет, что, покупая монитор с небольшим размером пикселя, вы соответственно привязываете себя к мелкому тексту. На такую меру, как увеличение размера системных шрифтов в настройках операционной системы, рассчитывать не стоит — масштабируемость современных ОС все еще не на высоте, и неудобств такое решение может принести изрядно. Для работы с графикой, наоборот, более предпочтительными являются модели с небольшим размером пиксела из-за меньшей «зернистости» изображения.

Так что наилучшей рекомендацией потенциальному покупателю LCD-монитора будет не «зацикливаться» на чьих-то советах и рекомендациях, а самому пойти в магазин и подобрать оптимальный (для своих глаз) размер и разрешение матрицы, а приведенная ниже таблица 2 позволит составить предварительное впечатление о различных типах типичных матриц.

Вопрос: Какие бывают цифровые интерфейсы мониторов и в чем заключается их преимущество перед обычными, аналоговыми?

Ответ: Аналоговый интерфейс D-Sub является наследием уходящих в прошлое CRT-мониторов. Главный его недостаток — необходимость двойного аналого-цифрового преобразования сигнала (первый раз цифровые данные преобразуются в аналоговый сигнал в видеокарте, а второй — происходит обратное преобразование в мониторе), что, естественно, не способствует улучшению его качества (особенно в больших разрешениях).

В настоящее время он вытесняется цифровым интерфейсом DVI (Digital Video Interface), посредством которого цифровые данные из видеокарты, минуя цепочку АЦП-ЦАП, подается непосредственно на схему управления матрицы LCD-монитора. Изображение в этом случае передается на монитор без потерь качества из-за преобразования, кроме того, «по цифре» теперь и осуществляется управление монитором, так что пользователь освобождается от довольно сложной и трудоемкой процедуры «тонкой» подстройки параметров изображения. При этом не стоит упускать из виду, что реальное преимущество от использования интерфейса DVI может проявиться только на мониторах с диагональю 20″ и выше, да и то, только при наличии достаточно качественной видеокарты. В мониторах с диагональю 15″-19″ заметного выигрыша в качестве изображения по сравнению с аналоговым интерфейсом ожидать не стоит.

В настоящее время интерфейс D-Sub устанавливается в LCD-мониторы в основном для обеспечения их совместимости со старыми видеокартами, не имеющими DVI выхода (в первую очередь — системных плат с интегрированным видео). И лишь только самые дешевые бюджетные модели LCD-мониторов (в целях экономии) используют интерфейс D-Sub в качестве основного и вообще не имеют DVI-входа.

Интерфейс DVI имеет три варианта реализации:

* DVI-D — базовый интерфейс, обеспечивающий только «цифровое» подключение;
* DVI-I — расширенный вариант интерфейса DVI-D, наиболее часто встречающийся в настоящее время. Обеспечивает передачу как цифрового, так и аналогового сигнала, для которого в кабеле выделены специальные линии;
* DVI-A — используется только для передачи аналоговых данных. Физически реализуется в качестве переходника (или, что гораздо реже, кабеля) для подключения к разъему DVI-I.

Кабеля типов DVI-D и DVI-I могут быть двух типов: Single- или DualLink. Кабель первого типа, в соответствии со своим названием, содержит только один канал DVI и обеспечивает разрешение до 1920х1080. Но для новых 30″ мониторов, разрешение которых достигло 2560 x 1600 пикселей, пропускной способности кабеля SingleLink явно не хватит, и выход был найден в объединении двух таких интерфейсов в едином «конструктиве» — получился интерфейс DualLink. Естественно, и видеокарта должна поддерживать DualLink, т.е. иметь два автономных DVI выхода.

Кроме того, в последнее время популярность набирает новый стандарт передачи видеосигнала HDMI (High-Definition Multimedia Interface). Его несомненным достоинством является одновременная передача как видео, так и аудио, что более актуально в бытовой технике, чем в компьютерах.

Что же касается собственно передачи видеосигнала, то в этом отношении HDMI не имеет каких-либо реальных преимуществ перед привычным DVI.

Жидкокристаллические дисплеи. История, принципы работы, преимущества и недостатки

Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD — цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Рисунок 1. Конструкция ЖК-дисплея.

Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.

Рисунок 2. Плоскость поляризации.

Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).

Рисунок 3. Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).

Рисунок 4. Поляризация светового луча.

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (см. рис. 4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут принимать любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки — при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Технологии STN, DSTN, TFT, S-TFT

STN — сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки — их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Рисунок 5. Конструкция ЖК-матрицы.

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN — два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120–140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° (см рис. 6), и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Читать еще:  Первый взгляд на смартфоны Honor V30 и V30 Pro: бюджетные флагманы с 5G
Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector