0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микроархитектура Intel Sandy Bridge, часть III

Содержание

Микроархитектура Intel Sandy Bridge, часть III

Этой публикацией мы заканчиваем цикл статей теоретического плана, посвящённых новому поколению микроархитектуры Intel Core II с рабочим названием Sandy Bridge.

В первой части под названием «Микроархитектура Intel Sandy Bridge, часть I» мы рассмотрели структурные новшества новой процессорной микроархитектуры, а также изучили в деталях принцип работы кольцевой шины, кеш-памяти L3 и системного агента с входящими в его состав контроллером памяти DDR3, модулем управления питанием, блоком обработки медиаданных, видеовыходом и прочими вспомогательными компонентами.

Во второй статье — «Микроархитектура Intel Sandy Bridge, часть II» мы познакомили наших читателей с особенностями реализации и функционирования процессорных ядер Sandy Bridge.

В сегодняшней статье мы рассмотрим технологии и нововведения, реализованные в микроархитектуре Sandy Bridge для повышения производительности интегрированного графического процессора и модуля медиа-обработки.

⇡#Структура графической системы Sandy Bridge

Прежде чем перейти к рассмотрению особенностей реализации архитектурных изменений в интегрированной графической подсистеме Sandy Bridge, обязательно следует сказать несколько слов о рыночном позиционировании этого решения. По словам представителей Intel, работая над улучшением характеристик нового поколения встроенной в процессор графики, они в первую очередь преследовали цель повысить привлекательность своих решений в массовых сегментах рынка настольных и мобильных ПК.

Типичным сценарием использования таких систем является работа с документами, интернет-сёрфинг, просмотр онлайнового и потокового видео, воспроизведение Blu-Ray и DVD (обычных и 3D), казуальные, браузерные и DirectX 10.1 игры. Иными словами, целью Intel изначально не являлось соперничество в секторе высокопроизводительных графических процессоров для видеокарт, где царят DirectX 11-решения и где интегрированной графике пока не место. Но на уже занятом поле интегрированной 3D-графики Intel хотела показать вполне приличный результат.

Справедливости ради стоит отметить, что для большинства потребителей настольных и мобильных систем с интегрированной графикой, не интересующихся ресурсоемкими DX11-приложениями, в большинстве случаев достаточно возможностей чипов с ядром Clarkdale/Arrandale. Однако в Intel пошли дальше и практически удвоили возможности графики в реализации Sandy Bridge.

Прежде всего, хотелось бы обратить внимание на тот факт, что встроенный графический процессор теперь выполнен на едином кристалле вместе с остальными компонентами Sandy Bridge. В предыдущем поколении ядер Clarkdale/Arrandale встроенная графика с модулем обработки медиа и элементами периферии представляла собой отдельный дополнительный 45-нм кристалл с QPI-подключением к 32-нм кристаллу с процессорными ядрами и кешем L3, то есть 45-нм кристалл играл роль этакого встроенного «северного моста». В реализации архитектуры Sandy Bridge графика и все остальные элементы процессора располагаются на одном 32-нм кристалле.

В отличие от ядер Clarkdale/Arrandale, где управление производительностью и температурным режимом графики осуществлялось с помощью программного драйвера, жёстко привязанного к общим параметрам системы, GPU микроархитектуры Sandy Bridge управляется системным агентом на аппаратном уровне. При этом процессы изменения напряжения питания, тактовой частоты, производительности и энергопотребления встроенной графики теперь осуществляются в более широких пределах, с той же высокой эффективностью, что и изменение параметров процессорных ядер. Более того, турбо-режим графического процессора будет представлен и в настольных, и в мобильных процессорах.

Наконец, необходимо напомнить о самом главном моменте, который мы обсудили в первой части материала: теперь графический процессор подключен в систему общей кольцевой шиной и представляет собой равноценный элемент микроархитектуры Sandy Bridge с полноценным доступом к кешу L3.

Также напомним, что в реализации архитектуры Sandy Bridge модуль медиа-обработки и видеовыхода является отдельным структурным элементом системного агента.

⇡#Графический процессор в микроархитектуре Sandy Bridge

Возможности графического процессора Sandy Bridge в целом сравнимы с таковыми у предыдущего поколения подобных решений Intel, разве что теперь в дополнение к возможностям DirectX 10 добавлена поддержка DirectX 10.1.

Тем не менее нововведений в графике Sandy Bridge достаточно много, и нацелены они главным образом на увеличение производительности при работе с 3D-графикой.

Основной упор при разработке нового графического ядра, по словам представителей Intel, был сделан на максимальном использовании аппаратных возможностей для обсчёта 3D-функций, и то же самое – для обработки медиа-данных. Такой подход радикально отличается от полностью программируемой аппаратной модели, принятой на вооружение, например, в NVIDIA, или в самой Intel для разработки Larrabee (за исключением текстурных блоков).

Однако в реализации Sandy Bridge отход от программируемой гибкости имеет свои неоспоримые плюсы, за счет него достигаются более важные для интегрированной графики выгоды в виде меньшей латентности при исполнении операций, лучшей производительности на фоне экономии расхода энергии, упрощённой модели программирования драйверов, и что немаловажно, с экономией физических размеров графического модуля.

Для программируемых исполнительных шейдерных модулей графики Sandy Bridge, по традиции называемых в Intel «исполнительными блоками» (EU, Execution Units), характерны увеличенные размеры регистрового файла, что позволяет достичь эффективного исполнения комплексных шейдеров. Также в новых исполнительных блоках применена оптимизация ветвления для достижения лучшего распараллеливания исполняемых команд.

В целом, по заявлению представителей Intel, новые исполнительные блоки обладают удвоенной по сравнению с предыдущим поколением интегрированной графики пропускной способностью, а производительность вычислений с трансцедентальными числами (тригонометрия, натуральные логарифмы и так далее) за счёт акцента на использовании аппаратных вычислительных возможностей модели вырастет в 4-20 раз.

Внутренний набор команд, усиленный в Sandy Bridge рядом новых, позволяет распределять большинство инструкций API набора DirectX 10 в режиме «один к одному», как в случае с архитектурой CISC, что в результате позволяет добиться значительно более высокой производительности при той же тактовой частоте.

Быстрый доступ посредством быстрой кольцевой шины к распределённому кешу L3 с динамически конфигурируемой сегментацией позволяет снизить латентность, поднять производительность и в то же время снизить частоту обращений графического процессора к оперативной памяти.

По предварительным данным, процессоры Intel Core II будут представлены двумя типами интегрированной графики, единственным отличием между которыми будет количество исполнительных блоков (EU). Максимальное количество – 12 EU — получат все процессоры для портативных ПК и часть процессоров для настольных ПК, по 6 EU получат некоторые модели процессоров для настольных ПК.

Разумеется, проводить аналогию между исполнительными шейдерными блоками графических процессоров Sandy Bridge и их эквивалентами в архитектурах графических процессоров NVIDIA или AMD, и уж тем более сравнивать их количество и пытаться построить на этом какие-то сравнительные прогнозы по производительности, нет никакого смысла. Слишком уж они разные. Достоверные цифры для сравнения производительности мы сможем получить лишь после лабораторных тестов. Представители Intel говорят о двукратном превосходстве 3D-графики процессоров Sandy Bridge над предыдущим поколением.

По предварительным данным, тактовая частота графического ядра процессоров Sandy Bridge составит в разных версиях процессоров от 650 до 850 МГц, а с «раскачкой» при помощи Turbo Boost — до 1350 МГц в чипах для настольных ПК и до 1300 МГц в чипах для ноутбуков.

⇡#Обработка медиа в процессорах микроархитектуры Sandy Bridge

Несмотря на тот факт, что физически модуль обработки медиа в Sandy Bridge расположен далеко за пределами графического процессора, а именно, в составе системного агента, обработка медиа-данных осуществляется с помощью «объединённых сил» медиа-модуля и GPU. В частности, с помощью исполнительных блоков графического процессора, оптимизированного под исполнение медиа-задач одновременно с обработкой 3D-графики.

Рендеринг видео значительно ускоряется благодаря распараллеленной обработке заданий и аппаратным медиа-кодекам распространённых форматов. Так, в Sandy Bridge значительно доработаны узлы кодирования и декодирования видео. В частности, специализированный мультиформатный распараллеленный движок декодирования MFX (Multi-Format Codec) теперь обеспечивает 100% аппаратное декодирование форматов MPEG2, VC1 и AVC, а также кодирование в формате AVC. Полностью аппаратная реализация мультиформатного кодека обеспечивает продолжительное время работы от батарей при автономном воспроизведении, а также быстрое декодирование видео.

Особый упор в презентации о Sandy Bridge представители Intel сделали на том, что новые процессоры даже самой бюджетной категории будут способны без каких-либо затруднений воспроизводить стереоскопический контент в формате Blu-ray 3D. Иными словами, в плане работы с медиа-контентом процессоры Sandy Bridge ничем не уступают по возможностям графическим решениям конкурентов.

Специализированные аппаратные ускорители обработки медиа в чипах Sandy Bridge, наряду с повышением скорости обработки контента, обеспечивают такие современные функциональные возможности, как автоматическое детектирование деинтерлейсинга и кинотеатрального режима, качественное масштабирование видео, фильтрацию шумов и повышение детализации. В модуле обработки медиа-контента также реализованы аппаратные средства для качественной обработки цветовой составляющей и изображения – улучшения передачи телесных тонов, адаптивного повышения контрастности и общего управления цветовыми настройками.

⇡#Энергопотребление при работе с 3D-графикой и медиа-контентом

В первой части материала, в процессе знакомства с модулем системного агента, мы рассмотрели технологию Turbo Boost, принципы аппаратного управления напряжением питания и тактовыми частотами, производительностью и терморежимом компонентов микроархитектуры Sandy Bridge.

Читать еще:  Частота обновления экрана смартфона iQOO Neo 3 составит 120 Гц

В этой части будет уместным ещё раз напомнить, что аппаратное управление питанием и тактовой частотой графического процессора в микроархитектуре Sandy Bridge делегировано системному агенту и организованное по образу и подобию управления процессорными ядрами. Такая организация технологии Turbo Boost позволяет оптимизировать энергопотребление графики и применять взвешенные рациональные сценарии нагрузки графического ядра и процессорных ядер.

В презентации Intel, посвящённой графическим компонентам микроархитектуры Sandy Bridge, подчёркивается, что разработчикам удалось значительно снизить энергопотребление новых процессоров и увеличить эффективность работы технологии Turbo Boost в режиме обработки медиа-данных – главным образом за счёт оптимизации целочисленных вычислений, введения распределённых цепей управления и агрессивных режимов отключения питания незадействованных компонентов.

Так, например, в режиме воспроизведения HD-видео энергопотребление процессора Sandy Bridge снижается практически вдвое. Более того, в процессе работы с типичным медиа-контентом при полной загрузке энергопотребление процессора примерно на 30% ниже, чем при работе с типичной 3D-задачей.

Процессоры Intel с микроархитектурой Sandy Bridge: ближайшие перспективы

Судя по информации, имеющейся на сегодняшний день, официальный анонс новых процессоров Intel Core II с микроархитектурой Sandy Bridge состоится в ближайшие несколько недель. Иными словами, всего несколько недель отделяет нас от возможности поговорить о характеристиках чипов Sandy Bridge предметно, с конкретными цифрами производительности различных шин, интерфейсов, с обсуждением результатов первых тестов.

Углубляться в описание ещё не анонсированных продуктов в такой ситуации особого смысла не имеет: незачем пересказывать догадки, когда совсем скоро можно будет представить официальную информацию; к тому же некоторая часть уже доступной информации уже сейчас находится под эмбарго соглашения о неразглашении.

И всё же кое-какие данные о новой платформе Intel на базе процессоров Sandy Bridge мы представим сейчас — тем более что большая часть этой информации доступна публично ещё с сентября, когда состоялся Форум Intel для разработчиков в Сан Франциско.

Первое поколение процессоров Sandy Bridge будет выпускаться с соблюдением норм 32-нм техпроцесса; первыми на рынке будут представлены двуядерные и четырёхядерные процессоры для мобильных и настольных систем. Предварительная информация о некоторых из них представлена в таблице ниже.

Железный сайт

Sandy Bridge — название новой микроархитектуры процессоров Intel, которые были представлены пару дней назад. Sandy Bridge — это дальнейшее развитие микроархитектуры Nehalem, которая сначала появилась в процессорах Core i7, а затем использовалась в Core i3 и Core i5.

Если Вы не следите за рынком CPU, то предлагаем немного истории. После Pentium 4, который был основан на 7-ом поколении микроархитектуры, названной Netburst, Intel решили вернуться к 6-му поколению (которая использовалась в Pentium Pro, Pentium II, и Pentium III), и, как оказалось, была более эффективной. На основе процессора Pentium М (с микроархитектурой 6-го поколения) Intel разработали архитектуру Core, которая использовалась в серии процессоров Core 2 (Core 2 Duo, Core 2 Quad, и т.д.). Затем Intel усовершенствовали данную архитектуру (основное новшество — это добавление интегрированного контроллера памяти), получив в результате микроархитектуру Nehalem. Она использовалась в процессорах серий Core i3, Core i5 и Core i7. И вот теперь Nehalem в результате усовершенствований Intel превратили в Sandy Bridge, которая будет использоваться в процессорах Core i3, Core i5 и Core i7. Некоторые из них уже были представлены вместе с анонсом новой архитектуры, а остальные еще будут выпущены в 2011 — 2012 гг.

Таким образом, нынешняя микроархитектура была получена в результате следующей цепочки: Микроархитектура Pentium M -> Intel Core -> Intel Nehalem -> Sandy Bridge.

Основные особенности и возможности микроархитектуры Sandy Bridge суммированы ниже. Более подробно они будут расписаны далее.

  • Северный мост (контроллер памяти, графическое ядро и контроллер PCI Express) находится на одном кристалле с CPU. У Nehalem северный мост является отдельной микросхемой. В процессорах Clarkdale, произведенных по 32 нм техпроцессу, видеоядро хоть и находилось на одном корпусе с CPU, но физически это были два разных кристалла: видеоядро 45 нм и CPU 32 нм.
  • Первые модели будут использовать производственный процесс на 32 нм.
  • Кольцевая шина.
  • Новый кэш микроинструкций (кеш L0, может хранить 1536 микроинструкций).
  • Кеш инструкций L1 на 32 Кб и кэш данных L1 на 32 Кб (здесь нет отличий от Nehalem).
  • Кеш-память L2 была переименована в “кэш среднего уровня” (MLC) 256 Кб.
  • Кеш-память L3 называется LLC (Last Level Cache). Теперь совместно используется ядрами CPU и графическим ядром.
  • Технология Turbo Boost следующего поколения.
  • Новые универсальные инструкции AVX (Advanced Vector Extensions).
  • Усовершенствован графический контроллер.
  • Двухканальный контроллер памяти DDR3 (до DDR3-1333).
  • Интегрированный контроллер PCI Express поддерживает работу с одним GPU в режиме x16 или с двумя в режиме x8 (здесь нет отличий от Nehalem).
  • Первые модели будут выполнены под сокет LGA 1155.

Тестируем новые процессоры Intel Sandy Bridge

В конце ноября мы уже выпускали теоретический материал, посвященный Sandy Bridge, и читать про особенности процессорной архитектуры стоит именно там. Данная же статья будет посвящена в первую очередь описанию нашего опыта «общения» с новыми процессорами. Но без исторической справки и небольших комментариев всё же не обойтись.

История

Первые процессоры архитектуры Nehalem были представлены еще в ноябре 2008 года. Это были модели серии Bloomfield. На тот момент модели Intel Core отлично продавались без всяких обновлений (да что там, они до сих пор продаются). Но останавливаться нельзя, потому что:

Tick-tock, tick-tock, tick-tock

Tick-tock, tick-tock, tick-tock

Вместе с Bloomfield появился разъем LGA 1366. Именно для этой платформы корпорация в дальнейшем выпускала наиболее мощные модели. На одних топовых процессорах далеко не уедешь, поэтому через некоторое время появились модели, основанные на ядре Lynnfield. Они устанавливались в разъем LGA 1156, и стоимость новой платформы была гораздо ниже, чем у Bloomfield. Младшие модели стали настоящим бестселлером.

В рамках шага «тик» Intel, как водится, осуществила переход на более тонкий техпроцесс. Однако нельзя сказать, что этот переход прошел плавно. У Intel ведь теперь появилось две десктопных платформы, и для каждой из них пришлось готовить замену. С разъемом LGA 1366 всё решилось относительно просто — для поддержания престижа достаточно выпуска одной флагманской модели. 6 ядер и 32-нм техпроцесс — реальных конкурентов у Gulftown нет до сих пор.

LGA 1156 оказали гораздо больше внимания — было выпущено сразу 6 десктопных процессоров, а вместе с ними и множество мобильных. Всё семейство Clarkdale/Arrandale (именно так назывались новинки) отличало наличие на подложке сразу 2 кристаллов. 32-нм технология использовалась только для производства процессорных ядер и кэш-памяти. Всё остальные компоненты размещались на выполненном по «старому» 45-нм техпроцессу кристалле. Взаимодействие между двумя кристаллами осуществлялось через некий внутренний аналог шины QPI, из-за чего латентность памяти на новой платформе зачастую была очень высокой.

Таким образом, 32-нм техпроцесс впустил архитектуру Nehalem/Westmere в нижний ценовой сегмент и закрепил ее позиции в верхнем. При этом в среднем сегменте не произошло привычного уже перехода существующих моделей на более тонкий техпроцесс. Поэтому при выборе нового процессора нередко вставал вопрос — 4 ядра и 45 нм, или 2 ядра и 32 нм? Конец этим терзаниям положила архитектура Sandy Bridge.

LGA-2011 пока не фигурирует в роадмапах Intel

LGA-2011 пока не фигурирует в роадмапах Intel

Новые процессоры предназначены для установки в разъем LGA 1155, который является «наследником» LGA 1156. Все они оснащены встроенной графикой и 2/4 процессорными ядрами. Замена LGA 1366 придет ближе к концу года и будет называться LGA 2011. Процессоры под новый разъем будут содержать от 6 до 8 вычислительных ядер и, разумеется, не будут использовать встроенную графику.

Как видите, разделение платформ может остаться с нами надолго. При этом, судя по последним данным, обновления технологии будут привязаны именно к выпуску новых мейнстримовых моделей. Возможно, Intel в будущем синхронизует обновление, но только если почувствует в этом необходимость.

Ассортимент

Новый анонс Intel является, пожалуй, самым масштабным в истории компании. По крайней мере, в том, что касается количества новых наименований: анонсированы 15 процессоров для ноутбуков, 14 процессоров для настольных систем, десять чипсетов и 4 решения для беспроводной связи. 5-го января также были анонсированы 4 процессора для встраиваемых систем.

Полный список новых релизов Intel

Полный список новых релизов Intel

Все новые процессоры получили цифру 2 в начале своего названия. Сама система наименования не претерпела особенных изменений. Осталась небольшая путаница в сквозной нумерации настольных и мобильных моделей. Например, процессор с индексом 2300 относится к семейству Core i5, в то время как модель 2310M — это i3.

В целом всё просто, но есть нюансы…

В целом всё просто, но есть нюансы…

Остались с нами и буквенные индексы. «K» привычно указывает нам на разблокированный множитель. «S» тоже знакома — она обозначает экономичные модели процессоров. А вот «T» –что-то новенькое. Оказывается, это… еще более экономичные процессоры. Разделение объясняется заявленным тепловым пакетом. Обычные четырёхъядерные настольные SNB обладают TDP в 95 Вт, S-модели — 65 Вт, а T-модель — 45 Вт. Двухъядерные модели потребляют еще меньше.

Intel решила отказаться от индексов «L» и «U» в названиях своих мобильных процессоров, которые раньше обозначали примерно то же, что «S» и «T» сейчас обозначают в настольных. Теперь их скорее всего можно будет определять по последней цифре — 9 для L и 7 для U. Для мобильных процессоров также сохранился индекс «Q», обозначающий то, что в данной модели 4 вычислительных ядра. Настольные процессоры, увы, этого индекса лишены. «M» — мобильные процессоры, «E» — для встраиваемых систем, «X» — модели серии Extreme Edition. В общем, запутаться несложно.

Набор чипсетов шестой серии

Набор чипсетов шестой серии

Читать еще:  Плеер MD Walkman MZ-R909 производства SONY

С чипсетами всё проще. P67, H67 и Q67 по сути своей аналогичны P55, H57 и Q57, а B65 — своего рода Q67 с урезанной функциональностью по работе с жесткими дисками.

Линейка обычных десктопных процессоров

Данный обзор посвящен десктопным продуктам, поэтому обсуждать мы в первую очередь будем именно эту линейку. Дифференцирование по семействам осталось прежним: Turbo Boost есть у моделей i5 и i7, Hyper-Threading у двухъядерных i3 и i5, а также у всех i7. Интересно, что процессоры серии i3 лишены поддержки AES-NI, которая в свое время была внедрена для всех Clarkdale. Семейство и «ядерность» также определяет доступный для процессора объем кэш-памяти. Различие есть и в производительности графики, но об этом позже.

Экономичные модели Intel называет lifestyle

«S» и «T» продукты добиваются столь низких значений TDP во многом за счет более агрессивной работы механизма Turbo Boost. В некоторых случаях частота может подниматься на 40% от штатной.

Что же принесли нам новинки? Как многие из вас знают, уменьшение техпроцесса позволяет расположить больше транзисторов на той же площади и, зачастую, поднять рабочую частоту кристалла. Совершенствование же самой архитектуры пытается другими методами увеличить производительность процессора на мегагерц при решении актуальных задач. В случае перехода к SNB произошло всё и сразу.

А вот и герой нашего обзора

А вот и герой нашего обзора

Итак, перед нами цельный кристалл, содержащий как процессорные, так и графические ядра. AMD называет такое решение APU, но использовать этот термин мы будем в соответствующих статьях. Такой подход не в новинку для сборок, используемых в менее требовательных к вычислительной мощности устройствах. Мы имеем в виду процессоры для медиаплееров, смартфонов, «планшеток» и т.п. Да что там,Intel сама уже год назад выпустила новые модели процессоров Intel Atom с интегрированной графикой (использовался 45-нм техпроцесс).

При этом значимость интеграции графики в Sandy Bridge всё же не стоит недооценивать. Одно дело Atom, который в самой старшей версии состоял из 176 млн транзисторов, и совсем другое — практически миллиард (995 млн) транзисторов в Sandy. Интереса ради укажем несколько цифр. Gulftown, самый крупный десктопный процессор Intel, состоит из 1,17 млрд транзисторов. Lynnfield — 774 млн. «Процессорная» часть Clarkdale состоит из 382 млн, а «графическая» — из 177 млн. Видно, что новинка заметно увеличилась относительно предшественников, но радикально количество транзисторов на ядро не увеличилось.

В плане доступных частот всё тоже предсказуемо. Core i5-680, самый быстрый процессор в семействе Clarkdale, работает на базовой частоте 3,6 ГГц, а Turbo Boost позволяет ему при работе одного ядра достигать 3,86 ГГц. Базовая частота Core i7-880, самого быстрого Lynnfield, составляет 3,06 ГГц, максимальная частота Turbo Boost — 3,73 ГГц. Sandy Bridge еще будет обновляться, но пока самый быстрый процессор нового поколения работает на частоте 3,4 ГГц, а механизм Turbo Boost в штатном режиме может поднять ее до 3,8 ГГц. Понятно, что не совсем корректно сравнивать процессоры различных архитектур, но видно, что «фабричный» частотный потенциал процессоров близок к таковому у 32-нм Clarkdale и заметно превосходит четырёхъядерные процессоры прошлого поколения. Далее мы поговорим о разгонном потенциале.

Разгон и Turbo Boost

Да, для многих пользователей Sandy Bridge теперь «разгон» и «Turbo Boost» могут стать синонимами. Дело тут в нескольких вещах. Во-первых, Intel интегрировала генератор тактовой частоты (PLL) в PCH. Шаг это логичный, ведь процессорный гигант уже давно стремится к максимальной интеграции компонентов.

Вопреки изначальным данным, базовую частоту (теперь она составляет 100 МГц) менять можно. Однако меняется она в очень узких пределах. Дело в том, что как-то менять множитель можно только у процессорных ядер, памяти и графики, а остальные компоненты ( PCI, PCIe, SATA и прочие) тактуются абсолютно синхронно. Далеко тут не уйти. Может быть, кто-то из производителей материнских плат попытается как-то исправить ситуацию, ведь блокирование BCLK усложняет продвижение оверклокерских моделей. Однако мы не уверены, что им это окажется по силам.

Ладно, базовую частоту не трогаем. Ничего, когда-то раньше так уже было, множителем тоже неплохо можно разгонять CPU. Однако возможность эта будет предоставлена не для всех процессоров. Как и в последних семействах настольных процессоров Intel, множитель будет разблокирован только у моделей с буквенным индексом «K» в конце названия. Их пока 2, и обе они четырёхъядерные.

Микроархитектура Sandy Bridge

Страницы работы

Содержание работы

X. Микроархитектура Sandy Bridge.

Можно считать, что к 2006 году закончилась эпоха процессоров Intel с микроархитектурой NetBurst (серии Pentium 4, Pentium D), в которой основным способом увеличения производительности процессоров являлось увеличение его тактовой частоты. Причем это переосмысление методов дальнейшего развития микропроцессорной техники пришло примерно в это же время и другим производителям микропроцессоров, например, такими как главный конкурент корпорации Intel фирмы AMD. Причиной этого переосмысления явилось резкое увеличение потребляемой мощности (свыше 130 – 150 Вт на корпус) и, как следствие этого, существенное увеличение затрат на отвод тепла.

С этого времени основной задачей проектировщиков микропроцессоров стало разработка методов не просто максимального увеличения производительности, а достижения высокого уровня производительности при обеспечении энергопотребления на приемлемом уровне, т.е. улучшение энергетической эффективности работы микропроцессоров.

Энергетическую эффективность обычно характеризуют величиной, численно равной среднему количеству поглощенной энергии, приходящейся на одну выполненную инструкцию (EnergyPerInstruction, EPI). Она измеряется в джоулях и определяется по формуле:

Заметим, что эту характеристику целесообразнее было бы назвать энергетической неэффективностью, так как чем она больше, тем хуже для процессора, с точки зрения удельного потребления энергии.

Поскольку затраченная энергия равна произведению энергетической мощности (Power) на временной интервал (T), а количество выполненных инструкций определится произведением производительности процессора (Performance) на этот временной интервал, то:

То есть, энергетическую эффективность EPI можно трактовать как потребляемую мощность процессора в расчете на единицу производительности.

С другой стороны, общую производительность процессора можно выразить в виде:

Где F – тактовая частота процессора, а IPC (InstructionPerCycle)абсолютная производительность, определяемая как количество инструкций, выполняемых процессором за один такт.

Потребляемая же процессором мощность может быть определена по формуле:

Где U – напряжение питания процессора;

Сdдинамическая емкость — некоторая константа, которая определяется числом транзисторов в микросхеме процессора и активностью их переключения, а также технологией производства.

(Строго говоря, динамическая емкость равна отношению электростатического заряда проводника к разнице потенциалов между проводниками, обеспечивающими этот заряд).

Следовательно, энергетическая эффективность процессора может быть выражена как:

Отсюда следует, что энергетическая эффективность процессора не зависит от тактовой частоты, на которой работает процессор, хотя и существует некоторая зависимость между напряжением питания процессора и его возможной тактовой частотой. При одинаковой тактовой частоте, энергетическая эффективность будет тем меньше, чем меньше Cd, и напряжение питания, и чем больше инструкций выполняется за один такт.

Заметим, при этом, что напряжение питания U определяется, в основном, не архитектурой, а уровнем технологии производства микропроцессоров. Увеличение же абсолютной производительности IPC достигается путем архитектурных усовершенствований, главным образом за счет распараллеливания процессов обработки.

Поэтому разработчики обратили особое внимание на разработке методов распараллеливания вычислительного процесса. К ним относят: усовершенствование методов многозадачного режима работы, и разработка многоядерных процессоров, позволяющих эффективно реализовать этот режим на одном процессоре; разработка методов реализации многопоточной обработки (технология Hyper Threading), позволяющая выполнять одновременно два потока информации на одном ядре процессора; введение технологии SIMD (MMX, SSE, AVX), позволяющей одной инструкцией обрабатывать несколько данных; применение суперскалярных процессоров, использующих несколько исполнительных устройств и, вследствие этого исполнять несколько команд одновременно и пр.

Именно исходя с этой позиции, позиции приоритетности достижения наилучшей энергетической эффективности, специалисты фирмы Intel разработали к 2006 году новую микроархитектуру микропроцессоров – Core Microarchitecture. Эта микроархитектура легла в основу целого ряда новых серий процессоров. При этом корпорация Intel определила следующие кодовые названия этих серий: Conroe – микропроцессоры для настольных компьютеров, c энергопотреблением не более 65 Вт; Merom – микропроцессоры для мобильных ноутбуков, с энергопотреблением около 35 Вт; и Woodcrest — микропроцессоры для серверов, с энергопотреблением до 80 Вт.

Интересно отметить, что эта новая микроархитектура по сути является не улучшением архитектуры NetBurst (Pentium 4), как казалось бы логичным, а дальнейшим, хотя и существенным, развитием архитектуры P6 – архитектуры предшествующего 6-го поколения семейства Х86 (процессоров Pentium Pro, Pentium II, Pentium III, Pentium M).

Микропроцессоры, основанные на архитектуре Intel Core, стали обрабатывать до 4 инструкций за один такт, т.е. больше, чем все предшествующие МП семейства Х86, а также все, существующие на 2008г, разработки фирмы AMD. Длина исполнительного конвейера МП с архитектурой Intel Core – 14 ступеней и, следовательно, их тактовые частоты не смогут повышаться до таких значений, которые позволяет архитектура NetBurst. Зато это обстоятельство позволяет существенно повысить эффективность работы микропроцессоров с точки зрения характеристики «производительность на ватт».

Еще в 2007 году корпорация Intel объявила, что в будущем она собирается придерживаться в своей деятельности по созданию новых микропроцессоров концепции «Tick-Tock» — принципа двухгодичной периодичности выпуска новой продукции. Он заключается в том, что в первый год двухлетки, вводится в эксплуатацию новый технологический процесс, для изготовления процессоров уже существующей микроархитектуры. А на второй год, на базе этого технологического процесса, выпускается процессор принципиально новой микроархитектуры и.т.д.

В конце 2008 года было опубликовано сообщение о перспективах дальнейшего развития процессорного направления Intel после выпуска процессоров микроархитектуры Nehalem. Приведенный ниже рисунок (см. рис X.1) иллюстрирует действие принципа Tick Tock до 2012 года.

Архитектуры процессора intel за все время

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Читать еще:  Обзор процессора Intel Core i9-9900K: Like a Boss

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Архитектура процессора и поколения

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали — этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее — это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне — 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение — Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры — это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение — Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение — Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение — Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс — 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение — Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение — Skylake

Следующая архитектура процессоров intel core — шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение — Kaby Lake

Новое, седьмое поколение Core — Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Intel Sandy Bridge Processors (CPU+GPU) Launched

1 – Intel Sandy Bridge Overview

Sandy Bridge is the new line of processors from Intel. It’s the second generation of Core i3/i5/i7 processors and is an evolution of the previous Nehalem architecture. Sandy Bridge integrates a multi-core CPU and a GPU on the same silicon die. The GPU part of Sandy Bridge comes in two flavors: Intel HD 2000 Graphics and Intel HD 3000 Graphics. Sandy Bridge Core i3/i5/i7 use a LGA 1155 sockect.

The Intel HD 3000 Graphics has 12 GPU cores or 12 EUs (EU = Execution Unit in Intel terminology), while the HD 2000 has only 6 EUs. The default clock speed of both HD 3000 and HD 2000 is 850MHz. i7-2600K and i7-2600 can run up to 1350MHz while all other i5/i3 can run at a max clock speed of 1100MHz. Just to give you an idea, Intel HD Graphics 2000/3000 GPUs are in the same range of prestation than Radeon HD 5450 / HD 5550 or GeForce GT 430 GPUs.

Intel HD Graphics 2000/3000 are OpenGL 3 and Direct3D 10.1 capable GPUs (while Radeon HD 5450 is a DX11 capable GPU).

Sandy Bridge GPU shares the LLC (or Last Level Cache, new name of the L3 cache) with the CPU execution units.

Intel HD Graphics 3000 – GPU cores: 12

  • i7-2600K, TDP: 95W, CPU cores: 4+
  • i5-2500K, TDP: 95W, CPU cores: 2|4

Intel HD Graphics 2000 – GPU cores: 6

  • i7-2600, TDP: 95W, CPU cores: 4+
  • i5-2500, TDP: 95W, CPU cores: 2|4
  • i5-2400, TDP: 95W, CPU cores: 2|4
  • i5-2300, TDP: 95W, CPU cores: 2|4
  • i3-2120, TDP: 65W, CPU cores: 2
  • i3-2100, TDP: 65W, CPU cores: 2

Another new thing in Sandy Bridge processors is that, if the CPU cores are only slightly loaded, the clock speed of GPU cores is automatically overclocked to the max value (1100MHz or 1300MHz, depending on the CPU model).

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector