0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Загадочный беспорядок: история фракталов и области их применения

Содержание

Что такое фрактал? Фракталы в природе

Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.

Порядок в хаосе

Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в точные науки, мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.

Немного сухих фактов

Само слово «фрактал» с латыни переводится как «частичный», «разделенный», «раздробленный», а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.

Историческая справка, или Как все начиналось

На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора – «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид – С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.

Динамические, или алгебраические фракталы

К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.

Человек с пространственным воображением

Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени.

Жюлиа – Мандельброт

Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».

Л. Карпентер: искусство, созданное природой

Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал — это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.

Читать еще:  Игровые ноутбуки на Ryzen 4000 появятся в продаже летом

Решение Карпентера

Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те — на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.

Первая 3D-визуализация на фрактальном алгоритме

Уже через несколько лет Лорен применил свои наработки в масштабном проекте – анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма «Star Trek». Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.

Том Беддард

В прошлом лазерный физик, а ныне цифровых дел мастер и художник , Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.

Фракталы в природе

Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина – они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.

Музыкальная пауза

Оказывается, фракталы — это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.

Индикатор-фрактал

Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.

В заключение

Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.

Загадочный беспорядок: история фракталов и области их применения

  • Главная
  • Список секций
  • Химия
  • Загадочный беспорядок

Загадочный беспорядок

Автор работы награжден дипломом победителя III степени

Во второй половине двадцатого века в химии произошли фундаментальные изменения. Было наглядно показано, что значительная часть природных систем может быть отнесена к категории фракталов. Одно из важных направлений в современной науке – нанотехнологии, достижения которых используются во многих сферах деятельности людей.

Цель исследования: доказать значимость фрактальных структур в современной жизни людей.

Объект исследования: фракталы.

Предмет исследования: фрактальные структуры веществ и процессов.

1) изучить историю, виды и области применения фрактальных структур;

2) показать фрактальность структур наиболее применяемых строительных материалов;

3) освоить программу ChaosPro для построения фракталов.

Для решения задач использовались следующие методы исследования:

— теоретические: анализ и синтез данных из информационных источников, абстрагирование, обобщение, систематизация экспериментальных данных;

— эмпирические: экспериментальный, сравнительно-сопоставительный анализ экспериментальных данных;

— математические: расчеты и вычисления по формулам, визуализация с помощью таблиц, графиков и диаграмм.

1.1. Понятие фрактала

Фрактал – это сложная геометрическая фигура, которая составлена из нескольких бесконечных последовательностей частей, каждая из которых подобна всей фигуре целиком, и повторяется при уменьшении масштаба [1].

1.2. История появления фракталов

Понятие фрактал появилось в конце 70-х годов XX века. Математический аналитик Бенуа Мандельброт изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Так он пришел к открытию нового направления в математике – фрактальной геометрии [2].

1.3. Классификация фракталов

Все фракталы можно разделить на группы. Геометрические фракталы по-другому называют классическими. Именно с них началась история фракталов. Примеры: Снежинка Коха, Пятиугольник Дюрера, Салфетка Серпинского, Кривая Дракона. Алгебраические фракталы свое название они получили, за то, что их строят, используя простые алгебраические формулы. Например, Множество Мандельброта, Множество Жулиа, Бассейны Ньютона. Третья большая группа фракталов – стохастические. Типичный представитель данного класса фракталов «Плазма». Почти все природные образования: кроны деревьев, облака, горы имеют фрактальную структуру. Даже сувенир Матрешка – типичный стохастический фрактал [3].

1.4. Применение фракталов

В наши дни фракталы находят широкое применение в различных областях человеческой деятельности. Фракталы в медицине. Человеческий организм состоит из множества фрактальных структур: кровеносная система, мышцы, бронхи, бронхиальные пути в легких, артерии.Теория фракталов применятся для анализа электрокардиограмм. Рентгеновские снимки, обработанные с помощью фрактальных алгоритмов, дают более качественную картинку, а соответственно и более качественную диагностику. Фракталы в архитектуре. Такеси Миякава создал тумбочку Fractal 23, которая содержит 23 ящика разных размеров и пропорций, которые как-то ухитряются уживаться между собой внутри кубического корпуса. Фракталы в экономике. Фракталы популярны у экономистов для анализа курса фондовых бирж, валютных и торговых рынков. Фракталы в играх. Во многих компьютерных играх, где присутствуют природные ландшафты, так или иначе используются фрактальные алгоритмы [4].

Читать еще:  FAQ по Meltdown и Spectre для чайников: обновитесь и молитесь!

Глава II . АНАЛИЗ СВОЙСТВ ФРАКТАЛЬНЫХ СТРУКТУР,

ПРИМЕНЯЕМЫХ В СТРОИТЕЛЬСТВЕ

2.1. Обоснование выбора изучения золя-геля кремневой кислоты

Наше исследование мы решили провести на основе соединений кремния. Так как бетон, силикатные стекла, различные огнеупоры и теплоизоляция, имеют огромное значение в строительстве. Для производства этих материалов необходимо получение дисперсных систем с фрактальной структурой. Наша работа основана на получении золь-геля кремневой кислоты и изучении его свойств [5].

2.2. Получение золь-геля кремневой кислоты

Методика эксперимента: В пробирку наливаем 1 мл концентрированного раствора силиката натрия и 2 мл 12% раствора HCl . Перемешиваем раствор стеклянной палочкой. Далее нагреваем до кипения.

Результаты эксперимента: Наблюдаем образование золя, а затем геля – студенистой массы, не выливающейся из пробирки при перевертывании ее вверх дном. Образуется твердое тело, состоящее из связанных между собой микрочастиц, образующих жесткий каркас. В результате реакции образовался сначала золь, а затем гель кремневой кислоты. Уравнение реакции будет следующим:

Na 2 SiO 3 + 2 HCI × nH 2 O → SiO 2 × ( n +1) H 2 O + 2 NaCI

По мере образования частиц в растворе начинается объединение отдельных частиц, определяющее структуру геля.

Фрактальное строение геля кремневой кислоты

2.3. Свойства геля с учетом фрактальной размерности

Методика исследования: Используем формулу для расчета средней плотности геля: p ( r ) = p ×( r / r ) 3- D , где D – фрактальная размерность геля. Рассчитаем среднюю плотность для разного размера частиц .

Результаты: из справочных таблиц фрактальная размерность геля равна D= 2,12 ± 0,05. Плотность оксида кремния находим по таблице. Она равна 2,65г/см 3 . Размеры частиц могут быть 2-10нм, размеры пустот 35-120 нм. Вычислим среднюю плотность для гелей с частицами граничных размеров от 2 нм до 10 нм в зависимости от размера пустот.

Таблица 1. Средние плотности частиц геля SiO 2 в зависимости от размера пустот

Загадочный беспорядок: история фракталов и области их применения

Что, скажите, привнёс компьютер в нашу жизнь нового, неведомого до него? Рискуя навлечь гнев фанатиков бесчисленных вариантов применения компьютеров, заявляю: главное — он позволил нам увидеть фракталы. Это модное понятие взрывообразно шагает по планете, завораживая своей красотой и таинственностью, проявляясь в самых неожиданных областях: метеорологии, философии, географии, биологии, механике и даже истории. Если мы зададим слово «фрактал» в любом поисковике, то придем к мысли, что Рунет создавался для фракталов.

Кто придумал «фрактал»?

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Пеано нарисовал особый вид линии (рисунок №1). Для ее рисования Пеано использовал следующий алгоритм.
На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии (Часть 1 и 2 рисунка 1). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость.Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Р. Мандельброт (Benoit Mandelbrot), математик из Исследовательского центра им. Томаса Уотстона при IBM — отец современной фрактальной геометрии, который и предложил термин «фрактал» для описания объектов, структура которых повторяется при переходе к все более мелким масштабам.. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике — фрактальной геометрии.

Красота фракталов

Почему же фракталы так красивы? Так сказочно, обворожительно, волнующе (какие еще есть эпитеты?) красивы. Математика вся пронизана красотой и гармонией, только эту красоту надо увидеть. Вот как пишет сам Мандельброт в своей книге «The Fractal Geometry of Nature» «Почему геометрию часто называют холодной и сухой? Одна из причин лежит в ее неспособности описать форму облаков, гор или деревьев. Облака — это не сферы, горы — не углы, линия побережья — не окружность, кора не гладкая, а молния не прямая линия. «

Определение фрактала

Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала — это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно). Фрактал — это такой объект, для которого не важно, с каким усилением его рассматривать в увеличительное стекло, но при всех его увеличениях структура остается одной и той же. Большие по масштабу структуры полностью повторяют структуры, меньшие по масштабу. Так, в одном из примеров Мандельброт предлагает рассмотреть линию побережья с самолета, стоя на ногах и в увеличительное стекло. Во всех случаях получим одни и те же узоры, но только меньшего масштаба. Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта «The Fractal Geometry of Nature» ставший классическим — «Какова длина берега Британии?». Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра — мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно — длина берега Британии бесконечна.

Типы фракталов

Геометрические фракталы

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется «затравка» — аксиома — набор отрезков, на основании которых будет строиться фрактал. Далее к этой «затравке» применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований — получим геометрический фрактал.

Рассмотренная выше кривая Пеано является геометрическим фракталом. Классические примеры геометрических фракталов — Снежинка Коха, Лист, Треугольник Серпинского).

Снежинка Коха

Из этих геометрических фракталов очень интересным и довольно знаменитым является первый — снежинка Коха. Строится она на основе равностороннего треугольника. Каждая линия которого ___ заменяется на 4 линии каждая длинной в 1/3 исходной _/_. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций — получим фрактал — снежинку Коха бесконечной длинны. Получается, что наша бесконечная кривая покрывает ограниченную площадь. Попробуйте сделать то же самое методами и фигурами из евклидовой геометрии. Для построения геометрических фракталов хорошо приспособлены так называемые L-Systems. Суть этих систем состоит в том, что имеется определенных набор символов системы, каждый из которых обозначает определенное действие и набор правил преобразования символов.

Читать еще:  Живые глаза и приёмы из кино: Digital Foundry о секретах реалистичной графики Detroit: Become Human

Треугольник Серпинского

Второе свойство фракталов — самоподобие. Возьмем, например, треугольник Серпинского. Для его построения из центра треугольника мысленно вырежем кусок треугольной формы, который своими вершинами будет упираться в середины сторон исходного треугольника. Повторим эту же процедуру для трех образовавшихся треугольников (за исключением центрального) и так до бесконечности. Если мы теперь возьмем любой из образовавшихся треугольников и увеличим его — получим точную копию целого. В данном случае мы имеем дело с полным самоподобием.

Драконова ломаная

Драконова ломаная относится к классу самоподобных рекурсивно порождаемых геометрических структур. Ломаная нулевого порядка представляет собой просто прямой угол. Изображение фигуры каждого следующего порядка строится путем рекурсивных замен каждого из отрезков фигуры младшего порядка на два отрезка, сложенных также в виде прямого угла.

При этом каждый первый угол оказывается «вывернутым» наружу, а каждый второй — вовнутрь. Несмотря на внешнюю простоту, построение драконовой ломаной — увлекательная алгоритмическая задачка, решение которой может потребовать от вас определенных мыслительных усилий. Попробуйте «научить» ваш компьютер строить драконовы ломаные n — того порядка (естественно, в разумных пределах значений n). Это умственное упражнение будет способствовать оттачиванию вашего «боевого» искусства алгоритмизации и программирования. На рисунке проиллюстрирован алгоритм построения драконовой ломаной и изображен вполне взрослый «дракон» десятого порядка.

Алгебраические фракталы

Вторая большая группа фракталов — алгебраические. Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции Zn+1=f(Zn), где Z — комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится — на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение:

С течением времени стремится к бесконечности.
Стремится к 0
Принимает несколько фиксированных значений и не выходит за их пределы.
Поведение хаотично, без каких либо тенденций.
Чтобы проиллюстрировать алгебраические фракталы обратимся к классике — множеству Мандельброта.

Для его построения нам необходимы комплексные числа. Комплексное число — это число, состоящее из двух частей — действительной и мнимой, и обозначается оно a+bi. Действительная часть a это обычное число в нашем представлении, а вот мнимая часть bi интересней. i — называют мнимой единицей. Почему мнимой? А потому, что если мы возведем i в квадрат, то получим -1.

Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата Х это действительная часть a, а Y это коэффициент при мнимой части b.

На рисунке, изображающем множество Мандельброта я взял небольшой участок и увеличил его до размеров всего экрана (как в микроскоп). Что же мы видим? Проявление самоподобности. Не точной самоподобности, но близкой и с ней мы будем сталкиваться постоянно, увеличивая части нашего фрактала больше и больше. До каких же пор мы можем увеличивать наше множество? Так вот если мы увеличим его до предела вычислительной мощности компьютеров, то покроем площадь равную площади солнечной системы вплоть до Сатурна.

Стохастические фракталы

Типичный представитель данного класса фракталов «Плазма». Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число — тем более «рваным» будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря — получим вместо плазмы — горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и пожалуйста фотореалистичные горы готовы.

Программирование фракталов

Так будет выглядеть код на VB

При выполнении каждой рекурсии появляется четыре новых угла. Каждый из них составляет одну четвертую от предыдущего. Результат представлен на рисунке

L-системы

Любителям фракталов и математических картинок известны фантастические изображения растений, полученные с помощью программ. Это так называемые L-системы. В основе их построения лежат два принципа. Первый – это так называемая «черепашья графика» (оператор draw) патриарха GWBASIC и его детей Turbo Basic и QBasic, когда движение рисуется пошагово в приращениях относительно текущей точки. Либо моделируется данное поведение, задавая движение в приращениях координат. Второй принцип – изюминка метода: каждое единичное движение заменяется на весь рисунок. Например, нарисуем вилку-рогатульку. На следующем шаге работы программы каждая из трех палочек вилки заменяется такой-же вилкой, превращая вилку в ветку с сучками, после следующего шага получим лохматый куст, потом пушистое дерево, красивое, фрактальное. Меняя вид начальной картинки можно получать самые разные изображения от зонтиков укропа до колючего перекати-поле или пучка водорослей.

Суть L-кодирования сводится к следующему. Представим себе некое виртуальное программируемое устройство, состоящее из пера, управляющего им механизма и листа бумаги. Управляющий пером механизм способен исполнять несколько команд. А именно: он может опустить перо на бумагу и вычертить прямой отрезок заданной длины в направлении текущей ориентации пера (команда F). Он может изменить ориентацию пера по отношению к текущей на какой-то заданный относительный угол по часовой или против часовой стрелки (команды + и -). Он может также запоминать (заносить в стек) свое текущее состояние (команда [) и вспоминать (извлекать из стека) ранее запомненное состояние (команда ]). Под состоянием в данном случае понимается тройка чисел (x, y, a), где x и y — это координаты пера и а — это угол, определяющий направление ориентации пера. Таким образом, задав некое начальное направление а0, определив относительный угол поворота в 900 и задав длину отрезка, при помощи последовательности команд F+F+ F+F мы можем нарисовать квадрат. Определив относительный угол поворота в 600, при помощи последовательности команд F++F++F можно нарисовать равносторонний треугольник.

Предположим также, что в программы для нашего виртуального устройства, кроме пяти перечисленных команд, можно включать любые другие символы, которые управляющий механизм будет просто игнорировать. То есть если мы введем программу F+BF+CCF+CF, то устройство все равно нарисует квадрат. Теперь мысленно оснастим наше устройство приставкой, которая перед тем, как передать введенную программу на управляющий механизм, может заданное число раз просматривать ее, и при каждом очередном просмотре заменять любые символы последовательности по предварительно указанным правилам. Исходную программную последовательность символов теперь будем называть аксиомой. Например, введем аксиому FB+, и определим правило B Также можете ознакомиться и с другими программами, рисующими фракталы
Генератор веток
Несколько видов фракталов
Фрактал Мандельброта
Еще один фрактал Мандельброта
Кривые Гилберта
Fractal Studio 0.17a

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector