1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Процессоры и память

Содержание

Обзор процессора Intel Core i9-10900K: Skylake пошёл на пятый срок

Меньше чем через четыре месяца микроархитектура Skylake отметит своё пятилетие, и это – весьма внушительный возраст для процессорного дизайна, предлагающегося для массовых и высокопроизводительных чипов. Тем не менее, компания Intel раз за разом продолжает выпускать основанные на ней чипы: подумать только, новейшие Comet Lake-S, о которых сегодня пойдёт речь, – это прямые аналоги процессоров Core i7-6700K.

Как получилось, что для настольных систем компания Intel до сих пор не смогла предложить ничего принципиально более нового, мы говорили уже не один раз. Вывод новых микроархитектур у микропроцессорного гиганта был всегда привязан к сменам производственных норм, а после запуска 14-нм технологии с дальнейшими техпроцессами дело не заладилось. Производственный процесс с разрешением 10 нм, согласно изначальном плану, должен был быть освоен ещё в далёком 2017 году, и, если бы всё сложилось, как задумывалось, сейчас в ходу были бы совсем другие процессоры. Однако внедрение 10-нм норм обернулось для Intel настоящей катастрофой, и даже сейчас, когда речь идёт о запуске уже второй версии этой проблемной технологии, использовать её при выпуске крупных и высокочастотных полупроводниковых кристаллов компания всё ещё не решается. Поэтому актуальные массовые процессоры до сих пор продолжают основываться на 14-нм технологии и снова и снова получают одну и ту же микроархитектуру Skylake, наращивая лишь число вычислительных ядер, частоты и число знаков «плюс» в официальном обозначении производственных норм.

Тем не менее, как бы нам ни надоели очередные воплощения Skylake в кремнии, нельзя отрицать, что это – безусловно удачное решение, которое имеет право на такое долгожительство. Сомнения в её актуальности могут возникать лишь в свете использования техпроцесса с крупными допусками, но серьёзные претензии к ней предъявить непросто. Во-первых, несмотря на ежегодное появление новых итераций AMD Ryzen, процессоры c микроархитектурой Skylake всё ещё выглядят вполне конкурентоспособно по удельной производительности на такт, то есть по показателю IPC. Во-вторых, Skylake оказалась легко масштабируемой микроархитектурой. Не меняя ничего в принципах её внутреннего устройства, Intel сумела в два с половиной раза нарастить число процессорных ядер, и не потерять при этом в эффективности их взаимодействия. Более того, очень неплохо выглядят и достигаемые современными процессорами Intel тактовые частоты. Актуальные 14-нм последователи Skylake уверенно преодолели отметку в 5 ГГц, в то время как конкурирующим решениям, выпускаемым по 7-нм техпроцессу, таких же вершин достичь так и не удалось.

К тому же сегодня мы сокрушаемся по поводу использования в новых процессорах Intel архитектуры пятилетней давности, вероятно, в последний раз. Последователи Comet Lake-S для массового сегмента смогут отказаться от этого наследия уже достаточно скоро. В следующем поколении чипов, которое фигурирует под кодовым именем Rocket Lake-S, компания Intel планирует использовать прогрессивную микроархитектуру Willow Cove из мобильных процессоров Tiger Lake, переложенную на 14-нм техпроцесс. Принципиальное обновление микроархитектуры попутно должно произойти и в сегменте HEDT, где через несколько месяцев появятся процессоры с дизайном Ice Lake-X, производимые по 10-нм технологии.

Но не будем забегать вперёд: пока нам предстоит жить с ещё одной реинкарнацией Skylake. И главный вопрос, который стоит перед сегодняшним тестированием, заключается в том, сможет ли Intel, опираясь исключительно на старый технологический фундамент, дать достойный ответ на процессоры Ryzen третьего поколения, которые довольно агрессивно стали теснить Coffee Lake-S на всех фронтах. Отстаивать свои позиции микропроцессорный гигант планирует очень простыми средствами: добавлением флагманским процессорам пары вычислительных ядер, а в процессорах среднего и младшего звена – включением технологии Hyper-Threading.

⇡#Что нового в Comet Lake-S

Казалось бы, мы знаем Skylake вдоль и поперёк, но Intel вновь нашла, как можно улучшить продукты прошлого поколения, не прибегая ни к новым производственным технологиям, ни к изменениям в микроархитектуре. И главное добавление такого рода – это два дополнительных вычислительных ядра, которые получили старшие модели процессоров Core i9, относящихся к семейству Comet Lake-S. Таким образом, теперь массовая платформа Intel может быть укомплектована процессором, обладающим сразу десятью вычислительными ядрами.

Пару дополнительных ядер прибавили в Comet Lake-S по уже отработанной схеме. Их фактически присоединили к имеющемуся кристаллу сбоку, подключив ко всё той же кольцевой шине, которая, кстати говоря, способна «вытянуть» и 12 ядер (такие конфигурации использовались в серверных процессорах Broadwell-E). Естественно, дополнительные ядра укомплектованы и положенными им сегментами кеш-памяти третьего уровня объёмом по 2 Мбайт. Соответственно, получившийся десятиядерник оснащён в общей сложности 20 Мбайт L3-кеша.

Всё это хорошо видно по снимку полупроводникового кристалла 10-ядерной версии Comet Lake-S: он очень похож на Coffee Lake-S, а разница лишь в числе ядер.

В конечном итоге площадь 10-ядерного кристалла Comet Lake-S составляет порядка 198 мм 2 , и это на 14 % (ожидаемо) больше площади восьмиядерного кристалла Coffee Lake-S. Для сравнения стоит напомнить, что восьмиядерный 7-нм чиплет CCD процессоров Zen 2 имеет площадь всего 74 мм 2 , но площадь 12-нм I/O-чиплета достигает 125 мм 2 . То есть, как это ни странно, по суммарным размерам кремния между 10-ядерным Comet Lake-S и 8-ядерным Zen 2 можно поставить знак примерного равенства.

Сплотку из десятка ядер, выполненных по 14-нм техпроцессу, трудно сделать экономичной, не прибегая к существенному урезанию тактовых частот. Поэтому старшие процессоры поколения Comet Lake-S заметно нарастили свои энергетические аппетиты и, соответственно, тепловыделение. Рамки теплового пакета, заявленные в спецификациях, отодвинулись с 95 до 125 Вт, а предел потребления при кратковременных нагрузках теперь может доходить (у флагманской модели) до 250 Вт даже с официальной точки зрения. Столь значительной рост аппетитов не мог не отразиться на дизайне платформы в целом: совместимые с Comet Lake-S модели материнских плат с новым процессорным гнездом LGA 1200, как правило, обладают заметно более мощным, чем раньше, конвертером питания.

Но есть и другая сторона: инженерам Intel пришлось предпринять специальные усилия к тому, чтобы всё выделяемое кристаллом Comet Lake-S тепло было отведено с должной эффективностью. В прошлом поколении процессоров, Coffee Lake-S, Intel прибегла к увеличению теплопроводности применяемого термоинтерфейсного материала под процессорной крышкой и перешла с полимерной термопасты на индиевый припой. Сейчас же сделан ещё один шаг – с 800 до 500 мкм уменьшена толщина процессорного кристалла. Дело в том, что вся полупроводниковая начинка расположена на кристалле со стороны процессорной платы, а сам кремний имеет довольно высокую теплопроводность, поэтому уменьшение его слоя действительно способствует улучшению теплоотвода.

Как видно по иллюстрации, утончение кристалла сопровождается утолщением медной теплораспределительной крышки. Это сделано для того, чтобы сохранить толщину процессоров неизменной, и чтобы системы охлаждения, разработанные для прошлых поколений CPU, остались совместимыми и с представителями семейства Comet Lake-S.

Рост потребляемой новыми процессорами мощности связан не только с увеличением размера полупроводникового кристалла и с дополнительными ядрами. Он вызван ещё и тем, что Intel дополнительно нарастила тактовые частоты и снабдила новые чипы более хитрыми механизмами их регулировки.

Например, если сравнить старший 10-ядерник нового поколения со старшим 8-ядерником прошлого поколения, то окажется, что новинка выигрывает у предшественника в ширине диапазона частот. Сейчас рабочие частоты флагмана задаются интервалом 3,7-5,3 ГГц, в то время как для Core i9-9900K этот интервал выглядел как 3,6-5,0 ГГц. Одновременно с этим реальные рабочие частоты новых процессоров сильнее приблизились к верхней границе диапазона благодаря тому, что к стандартной и привычной технологии Turbo Boost 2.0 добавились два новых «усилителя» – Turbo Boost Max 3.0 и Thermal Velocity Boost.

Технология Turbo Boost 3.0 уже знакома нам по процессорам для HEDT-систем: она добавляет к стандартному турбо-режиму понятие «удачных» ядер, которые определяются Intel индивидуально для каждого процессора на этапе производства. Смысл этого в том, что при изолированной нагрузке на эти ядра они умеют ускоряться на 100 МГц сильнее по сравнению остальными ядрами. Предполагается, что диспетчер задач операционной системы будет переносить на такие ядра малопоточные нагрузки, позволяя получать дополнительное улучшение производительности по сравнению с Turbo Boost 2.0. И данный механизм действительно работает в версиях Windows 10, начиная со сборки 1609. В семействе процессоров Comet Lake-S «удачных» ядра обычно два, но в целом технология Turbo Boost 3.0 доступна исключительно для десяти- и восьмиядерных процессоров.

Другая реализованная в Comet Lake-S технология – Thermal Velocity Boost – в процессорах для настольных систем встречается впервые, и пока доступна лишь в старших моделях семейства, относящихся к серии Core i9. Она отвечает за дополнительный динамический рост частоты на 100 МГц – за пределы заданных турбо-режимом границ. Как предполагается, такой «последний рывок» процессор может сделать при соблюдении двух условий: если его потребление не выходит за определённые спецификацией рамки, и если его температура не превышает 70 градусов.

В сумме всё это приводит к тому, что старшие десятиядерники могут работать на поразительно высоких частотах, особенно при снятых пределах потребления и при использовании качественных систем охлаждения, способных удерживать их от перегрева.

В качестве примера можно посмотреть на таблицы частот представителей семейства Comet Lake-S, относящихся к классу Core i9 и Core i7 и сопоставить их с частотами восьмиядерных Coffee Lake-S.

ЛикБез#1: Процессоры для ПК

Компьютеры сегодня сопровождают нашу жизнь повсеместно, и я расскажу подробно о том, из чего они состоят.

Я открываю рубрику «ЛикБез» и первым делом расскажу о центральном процессоре, он же ЦП, ЦПУ — central processing unit.

Создание серьезных вычислительных машин пришлось на период второй мировой войны, с помощью одной из них Британцы расшифровали Энигму. Это были электромеханические реле, с ферритовыми сердечницами и лампами. Стойки из таких устройств являлись первыми процессорами. Сейчас, уже более 75 лет спустя, процессоры представляют собой микросхемы с точностью производства измеряемой в нанометрах, т. е. в миллионных долях миллиметра.

Сейчас процессоры делятся на десктопные, серверные и мобильные. Далее мы будем говорить о ЦП в контексте десктопного процессора, т. е. процессора для персонального компьютера, процессора на архитектуре x86-64. Подробнее об архитектурах:
https://habr.com/ru/post/316520/

На мировом рынке существует два лидирующих производителя процессоров для ПК, это Intel и AMD. Российский Эльбрус и китайские процессоры пока только мелькают в новостях, и никак не влияют на рынок процессоров в потребительском сегменте в России.

Основной характеристикой процессора является тактовая частота измеряемая в герцах. Современные процессоры способны обрабатывать миллиарды операций в секунду, а их частота измеряется гигагерцами. Такт — это единица измерения выполнения процессором логических операций. Некоторые операции выполняются в доли такта, некоторые в несколько тактов. Такт – это промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всех операций процессора.

Чем выше тактовая частота, тем вычислительное ядро процессора мощнее, но и имеет более высокое тепловыделение и потребление энергии.

Реальная частота процессора получается при умножении базовой частоты системной шины на множитель. В некоторых версиях процессоров, у Intel это процессоры с индексом K или X, у AMD Ryzen с индексом X, есть разблокированный множитель, а это значит, что увеличивать частоту процессора можно не разгоняя шину.

Еще один важный показатель – это количество ядер в процессоре. Ядро является главной частью процессора, которая выполняет поток команд. У каждого ядра имеется собственная тактовая частота. Современные процессоры имеют от 2 до 32 и даже более ядер, контроллер в процессоре может увеличивать частоту отдельных ядер, если на них высокая загрузка, у Intel эта технология называется Turbo boost.

Частота в ядрах не суммируется, можно привести такую аналогию: ядро это грузовик, который мчится по автостраде и везет какой-то груз, второе ядро – это второй такой грузовик. Сколько бы таких грузовиков не было, они не приедут в намеченную точку быстрее, но они способны привезти больше. Так и тут, многоядерность помогает обрабатывать множество процессов параллельно.

Современные тяжелые приложения умеют пользоваться большим количеством ядер, поэтому в любом случае, чем больше ядер, тем мощнее процессор. Количество ядер так же влияет на тепловыделение и потребление энергии.

У процессоров intel core i7 до 8 поколения включительно и core i9 имеется технология hyper threading, которая создает 2 потока на 1 ядро, т.е. логически из 4 ядер мы получаем 8, что видно в мониторе ресурсов в системе, у AMD аналогичная технология называется SMT и используется в процессорах Ryzen 7 и Threadripper.

Читать еще:  Google отложила выход Pixel 4a до первой недели июня

Кэш память – это быстрая память внутри процессора, которая хранит часто используемые данные из оперативной памяти, чтобы сократить время обращения к ним.

Различают кэши 1-, 2- и 3-го уровней, 1 уровень или L1 – самая быстрая и маленькая память в ядре процессора, в среднем 64кб, L2 – блок памяти более высокого объема и высокой задержкой, в среднем полмегабайта, L3 – блок памяти для группы ядер, объем измеряется в мегабайтах.

Тепловыделение — в характеристиках современных десктопных процессорах пишут типичное тепловыделение. Но это не значит, что достаточно подобрать кулер с таким же теплоотведедением, так как для соблюдения приемлемой температуры, с учетом внешней температуры, пыли и амортизации комплектующих кулер должен быть мощнее. Очень важно правильно подобрать устройство охлаждения как для процессора, так и организовать воздушные потоки внутри системного блока. У Intel есть процессоры с индексом Т, c расчётным тепловыделением до 35 Вт у современных моделей, на их можно основе собирать компактные модели компьютеров.

Еще один важный показатель, о котором многие не знают — максимальная рабочая температура. У современных процессоров это температура может быть в районе 84-100 градусов Цельсия, при достижении которой срабатывают защитные системы: тро́тлинг, т.е. пропуск тактов или защитное выключение.

Во многих десктопных процессорах присутствуют графические ядра, для обработки изображения. Сейчас intel запустили процессоры и индексом F, без графического ядра.

Т.е. встроенной графики у этих процессоров нет и порты на материнской плате не будут выдавать изображение на монитор. ПК на основе процессоров с индексом F обязательно требуется видеокарта. Так же графического ядра нет во всех высокопроизводительных процессорах на сокетах 2066 и TR4.

Со значением маркировки процессоров Intel можно ознакомиться тут:
https://www.intel.ru/content/www/ru/ru/processors/processor-numbers.html

Сокет – это гнездо для процессора. Выбранный процессор должен быть совместим с сокетом, а так же его версией на материнской плате. Актуальные сокеты у Intel — 1151v2 и 2066, у AMD – AM4 и TR4.

Примерно 9 лет назад, с выходом семейства core i, в процессоры intel переехал контроллер памяти, теперь процессор обращается к памяти напрямую, а не через контроллер в материнской плате, который назывался «северный мост». Так же в процессор переехал и контроллер PCI-e.

Техпроцессом называют размер литографии измеряемой в нанометрах. Чем ниже этот показатель, тем современнее процессор. Чем меньше размер транзистора, тем больше их можно упаковать в процессор, при том же энергопотреблении и выделении тепла.

Еще один показатель процессора – это количество линий PCI-e. Ими формируется ширина канала связи по данной шине между процессором и высокопроизводительными платами расширения, например, видеокартами или сопроцессорами.

Процессоры Intel семейства Pentium и Celeron, core i3, i5, i7 i9 на сокете LGA1151 последней версии, имеют всего 16 линий PCI-e.

Процессоры Intel семейства i9 на 2066 сокете имеют 44 линии PCI-e, а i7-7800X — 28 линий PCI-e. Процессоры от AMD семейства Ryzen 3, 5, и 7 имеют так же 16 линий, а Threadripper 64 линии PCI-e – а это 4 полноценных x16 для плат расширения. Это одна из причин, почему для сборки серьезных рабочих станций используются топовые серии или серверные процессоры, где линий PCI-e больше.

SSD и периферийные устройства получают линии PCI-E от чипсета материнской платы, который соединен с процессором через шину DMI, но об этом мы поговорим в ЛикБезе про материнские платы.

Физический процессор состоит из трех основных компонентов, то что мы все видим, держа его в руке – термораспределительная металлическая крышка и текстолитовое основание с контактной площадкой. Внутри находится кремниевый кристалл, в котором находятся ядра, а иногда и не один, это может быть графическое ядро или еще один набор основных ядер – это самая сложная и дорогая часть процессора. Внутри кристалла процессора Intel core i7 находится 4 ядра, видеоядро, кэш память, контроллер оперативной памяти, DMI интерфейс для соединения с периферийными устройствами через чипсет материнской платы. А в процессорах AMD Epic и Threadripper находится сразу 4 кристалла по 4 ядра, но в тоже время процессор Intel i9 имеет 18 ядер упакованных в одном кристалле. Между кристаллом и термораспределительной крышкой есть слой термопасты, в топовых моделях используется припой. О термопастах и других термоинтрефейсках так же будет статья.

Обратная связь

Я ранее не занимался написанием подобного материала, знаю, что тут много разбирающих людей. Прошу в комментариях дать оценку, конструктивную критику или дополнения к материалу. Сообщить об ошибках и неточностях, или если что-то не понятно.

В планах сейчас написать пул статей по всем комплектующим, чтобы люди в информационный век лучше разбирались в компьютерах. Возможно, выйти с материалом на ютуб в дальнейшем.

Как работает оперативная память вашего компьютера?

Любые данные в компьютере — это нули и единички. Текст, который вы читаете прямо сейчас, передался с нашего сервера прямо на ваш компьютер и записался в памяти — он представляет собой последовательность нулей и единичек. Прямо сейчас вы смотрите на ваш монитор, который состоит из пикселей и отображает наш сайт. Изображение — это тоже нули и единицы. Видео — это нули и единицы. Музыка — нули и единицы. Любой контент, доступный на вашем компьютере можно представить в виде нулей и единиц. Но как?

Оперативная память — это сложное устройство, и знать его работу будет полезно каждому

Стоит начать с того, что компьютер понимает только двоичную систему счисления. В жизни мы используем десятичную, так как у нас 10 пальцев и нам она попросту удобнее, но у компьютера нет 10 пальцев — он может работать только с логическими устройствами, которые работают только в двух состояниях — включен или выключен, есть подача тока или нет подачи тока. Если логическое устройство активно, значит подача тока есть и бит равен единице, если подачи тока нет, значит бит равен нулю. Бит — это самая маленькая единица измерения. 1 бит может иметь всего два состояния 1 и 0. 1 байт — это 8 бит. Таким образом, если перебрать все возможные комбинации нулей и единиц, получим, что в 1 байте может храниться 256 комбинаций битов или 2 в степени 8. Например, «0000001», «0000010» или «10110010» — любую букву английского алфавита можно представить в виде 8 битов (1 байта).

Двоичный код выглядит именно так!

Благодаря различным кодировкам мы можем представить любую информацию в двоичном виде. То же касается и наших программ, написанных на различных языках программирования. Чтобы запустить какую-либо программу, её необходимо скомпилировать в двоичный код. Таким образом, в двоичном виде можно представлять как данные, так и инструкции (код) для работы с этими данными. Существуют еще и интерпретируемые языки (JavaScript, Python), в этом случае интерпретатор по ходу выполнения программы анализирует код и компилирует его в язык, понятный нашему компьютеру, то есть в последовательность нулей и единиц, и в этом случае нет необходимости компилировать программу каждый раз при желании запустить её.

Как работает процессор?

Нельзя говорить о памяти, не сказав пару слов о процессоре. Процессор и оперативной память довольно похожи, так как в обоих случаях используются логические устройства, которые могут принимать лишь два состояния. Однако процессор выполняет задачи, связанные с вычислениями. Для этого у него имеется устройство управления — именно на него поступают наши инструкции, арифметико-логическое устройство — оно отвечает за все арифметические операции (сложение, вычитание и так далее) и регистры.

Помимо оперативной памяти, в компьютере имеется кэш-память. Если вам интересна эта тема, можете изучить наш недавний материал.

Так как инструкции, поступающие на процессор, работают с данными из памяти, эти данные нужно где-то хранить. Брать их постоянно из оперативной памяти — слишком долго, поэтому в процессоре имеется своя память, представленная в виде нескольких регистров — она является самой быстрой памятью в компьютере.

Что такое регистр? Регистр в процессоре представлен в виде триггера, который может хранить 1 бит информации. Триггер — это один из множества логических элементов в микрочипах. Благодаря своей логике он способен хранить информацию. Вот так выглядит D-триггер:

Это D-триггер и он способен хранить информацию. Каждое простейшее логическое устройство, включая D-триггер, состоит из логических операций. На фото выше можно заметить знак «&» — это логическое И

Таблица истинности для логического «И»

Верхний переключатель «D» в D-триггере меняет значение бита, а нижний «C» включает или отключает его хранение. Вам наверняка интересно, как устроен этот «D-триггер». Подробнее работу триггеров вы можете изучить по видеоролику ниже:

Помимо D-триггера, существуют также RS-триггер, JK-триггер и другие. Этой теме посвящена не одна книга, можете изучить логические устройства микрочипов самостоятельно. Было бы неплохо углубиться еще и в тему квантовых процессоров, потому что очевидно, что будущее именно за ними.

Из чего состоит оперативная память?

Теперь вернемся к нашей памяти, она представляет собой большую группу регистров, которые хранят данные. Существует SRAM (статическая память) и DRAM (динамическая память). В статической памяти регистры представлены в виде триггеров, а в динамический в виде конденсаторов, которые со временем могут терять заряд. Сегодня в ОЗУ используется именно DRAM, где каждая ячейка — это транзистор и конденсатор, который при отсутствии питания теряет все данные. Именно поэтому, когда мы отключаем компьютер, оперативная память очищается. Все драйвера и другие важные программы компьютер в выключенном состоянии хранит на SSD, а уже при включении он заносит необходимые данные в оперативную память.

Вам наверняка будет интересно узнать виды оперативной памяти. На эту тему у нас есть отличный материал

Ячейка динамической оперативной памяти, как уже было сказано выше, состоит из конденсатора и транзистора, хранит она 1 бит информации. Точнее, саму информацию хранит конденсатор, а за переключения состояния отвечает транзистор. Конденсатор мы можем представить в виде небольшого ведерка, который наполняется электронами при подаче тока. Подробнее работу динамической оперативной памяти мы рассмотрели еще 7 лет назад. С тех пор мало что изменилось в принципах её работы. Если конденсатор заполнен электронами, его состояние равно единице, то есть на выходе имеем 1 бит информации. Если же нет, то нулю.

Как компьютер запоминает данные в ОЗУ?

Последовательность битов или 1 байт «01000001», записанный в ОЗУ, может означать что угодно — это может быть число «65», буква «А» или цвет картинки. Чтобы операционная система могла понимать, что означают эти биты, были придуманы различные кодировки для разных типов данных: MP3, WAV, MPEG4, ASCII, Unicode, BMP, Jpeg. Например, давайте попытаемся записать кириллическую букву «р» в нашу память. Для этого сначала необходимо перевести её в формат Unicode-символа (шестнадцатеричное число). «р» в Unicode-таблице это «0440». Далее мы должны выбрать, в какой кодировке будем сохранять число, пусть это будет UTF-16. Тогда в двоичной системе Unicode-символ примет вид «00000100 01000000». И уже это значение мы можем записывать в ОЗУ. Оно состоит из двух байт. А вот если бы мы взяли английскую «s», в двоичном виде она бы выглядела вот так «01110011».

Дело в том, что английский алфавит занимает лишь 1 байт, так как в UTF-кодировке он умещается в диапазон чисел от 0 до 255. В 256 комбинаций спокойно вмещаются числа от 0 до 9 и английский алфавит, а вот остальные символы уже нет, поэтому, например, для русских символов нужно 2 байта, а для японских или китайских символов нам понадобится уже 3 и даже 4 байта.

Вот мы и разобрались с тем, как работает оперативная память и как можно записать в неё данные. Понравился материал? Делитесь им с друзьями и давайте обсудим его в нашем чате.

Внимание, вопрос – можно ли доверять сообщениям в СМИ о том, что у растений на самом деле есть память? Согласитесь, читая это невольно вспоминаются такие шедевры журналистики как «в ростовской области деревья едят людей» или «растения уже читают ваши мысли» или растения убивают людей/зомби/коров… далее по списку. На самом же деле ученые и правда считают, […]

Если вы от природы обладаете отличной памятью, вы большой счастливчик. А все потому, что людям с плохой памятью для запоминания информации приходится прибегать к самым разным хитростям. Например, в 2018 году австралийские ученые и дизайнеры разработали шрифт Sans Forgetica, который помогает людям лучше запоминать читаемый текст. Также некоторые люди запоминают новую информацию, ассоциируя их с […]

Бывало ли у вас такое, что в ходе беседы с человеком вы внезапно не могли вспомнить номер его телефона или, что еще хуже, его имя? И это при том, что вы отчетливо помнили всю нужную информацию и через время, когда необходимость уже прошла, вы ее волшебным образом вспоминали? Долгое время этому необычному явлению не было […]

ЛикБез#1: Процессоры для ПК

Компьютеры сегодня сопровождают нашу жизнь повсеместно, и я расскажу подробно о том, из чего они состоят.

Я открываю рубрику «ЛикБез» и первым делом расскажу о центральном процессоре, он же ЦП, ЦПУ — central processing unit.

Создание серьезных вычислительных машин пришлось на период второй мировой войны, с помощью одной из них Британцы расшифровали Энигму. Это были электромеханические реле, с ферритовыми сердечницами и лампами. Стойки из таких устройств являлись первыми процессорами. Сейчас, уже более 75 лет спустя, процессоры представляют собой микросхемы с точностью производства измеряемой в нанометрах, т. е. в миллионных долях миллиметра.

Читать еще:  Анализ системных требований для игры S.T.A.L.K.E.R.

Сейчас процессоры делятся на десктопные, серверные и мобильные. Далее мы будем говорить о ЦП в контексте десктопного процессора, т. е. процессора для персонального компьютера, процессора на архитектуре x86-64. Подробнее об архитектурах:
https://habr.com/ru/post/316520/

На мировом рынке существует два лидирующих производителя процессоров для ПК, это Intel и AMD. Российский Эльбрус и китайские процессоры пока только мелькают в новостях, и никак не влияют на рынок процессоров в потребительском сегменте в России.

Основной характеристикой процессора является тактовая частота измеряемая в герцах. Современные процессоры способны обрабатывать миллиарды операций в секунду, а их частота измеряется гигагерцами. Такт — это единица измерения выполнения процессором логических операций. Некоторые операции выполняются в доли такта, некоторые в несколько тактов. Такт – это промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всех операций процессора.

Чем выше тактовая частота, тем вычислительное ядро процессора мощнее, но и имеет более высокое тепловыделение и потребление энергии.

Реальная частота процессора получается при умножении базовой частоты системной шины на множитель. В некоторых версиях процессоров, у Intel это процессоры с индексом K или X, у AMD Ryzen с индексом X, есть разблокированный множитель, а это значит, что увеличивать частоту процессора можно не разгоняя шину.

Еще один важный показатель – это количество ядер в процессоре. Ядро является главной частью процессора, которая выполняет поток команд. У каждого ядра имеется собственная тактовая частота. Современные процессоры имеют от 2 до 32 и даже более ядер, контроллер в процессоре может увеличивать частоту отдельных ядер, если на них высокая загрузка, у Intel эта технология называется Turbo boost.

Частота в ядрах не суммируется, можно привести такую аналогию: ядро это грузовик, который мчится по автостраде и везет какой-то груз, второе ядро – это второй такой грузовик. Сколько бы таких грузовиков не было, они не приедут в намеченную точку быстрее, но они способны привезти больше. Так и тут, многоядерность помогает обрабатывать множество процессов параллельно.

Современные тяжелые приложения умеют пользоваться большим количеством ядер, поэтому в любом случае, чем больше ядер, тем мощнее процессор. Количество ядер так же влияет на тепловыделение и потребление энергии.

У процессоров intel core i7 до 8 поколения включительно и core i9 имеется технология hyper threading, которая создает 2 потока на 1 ядро, т.е. логически из 4 ядер мы получаем 8, что видно в мониторе ресурсов в системе, у AMD аналогичная технология называется SMT и используется в процессорах Ryzen 7 и Threadripper.

Кэш память – это быстрая память внутри процессора, которая хранит часто используемые данные из оперативной памяти, чтобы сократить время обращения к ним.

Различают кэши 1-, 2- и 3-го уровней, 1 уровень или L1 – самая быстрая и маленькая память в ядре процессора, в среднем 64кб, L2 – блок памяти более высокого объема и высокой задержкой, в среднем полмегабайта, L3 – блок памяти для группы ядер, объем измеряется в мегабайтах.

Тепловыделение — в характеристиках современных десктопных процессорах пишут типичное тепловыделение. Но это не значит, что достаточно подобрать кулер с таким же теплоотведедением, так как для соблюдения приемлемой температуры, с учетом внешней температуры, пыли и амортизации комплектующих кулер должен быть мощнее. Очень важно правильно подобрать устройство охлаждения как для процессора, так и организовать воздушные потоки внутри системного блока. У Intel есть процессоры с индексом Т, c расчётным тепловыделением до 35 Вт у современных моделей, на их можно основе собирать компактные модели компьютеров.

Еще один важный показатель, о котором многие не знают — максимальная рабочая температура. У современных процессоров это температура может быть в районе 84-100 градусов Цельсия, при достижении которой срабатывают защитные системы: тро́тлинг, т.е. пропуск тактов или защитное выключение.

Во многих десктопных процессорах присутствуют графические ядра, для обработки изображения. Сейчас intel запустили процессоры и индексом F, без графического ядра.

Т.е. встроенной графики у этих процессоров нет и порты на материнской плате не будут выдавать изображение на монитор. ПК на основе процессоров с индексом F обязательно требуется видеокарта. Так же графического ядра нет во всех высокопроизводительных процессорах на сокетах 2066 и TR4.

Со значением маркировки процессоров Intel можно ознакомиться тут:
https://www.intel.ru/content/www/ru/ru/processors/processor-numbers.html

Сокет – это гнездо для процессора. Выбранный процессор должен быть совместим с сокетом, а так же его версией на материнской плате. Актуальные сокеты у Intel — 1151v2 и 2066, у AMD – AM4 и TR4.

Примерно 9 лет назад, с выходом семейства core i, в процессоры intel переехал контроллер памяти, теперь процессор обращается к памяти напрямую, а не через контроллер в материнской плате, который назывался «северный мост». Так же в процессор переехал и контроллер PCI-e.

Техпроцессом называют размер литографии измеряемой в нанометрах. Чем ниже этот показатель, тем современнее процессор. Чем меньше размер транзистора, тем больше их можно упаковать в процессор, при том же энергопотреблении и выделении тепла.

Еще один показатель процессора – это количество линий PCI-e. Ими формируется ширина канала связи по данной шине между процессором и высокопроизводительными платами расширения, например, видеокартами или сопроцессорами.

Процессоры Intel семейства Pentium и Celeron, core i3, i5, i7 i9 на сокете LGA1151 последней версии, имеют всего 16 линий PCI-e.

Процессоры Intel семейства i9 на 2066 сокете имеют 44 линии PCI-e, а i7-7800X — 28 линий PCI-e. Процессоры от AMD семейства Ryzen 3, 5, и 7 имеют так же 16 линий, а Threadripper 64 линии PCI-e – а это 4 полноценных x16 для плат расширения. Это одна из причин, почему для сборки серьезных рабочих станций используются топовые серии или серверные процессоры, где линий PCI-e больше.

SSD и периферийные устройства получают линии PCI-E от чипсета материнской платы, который соединен с процессором через шину DMI, но об этом мы поговорим в ЛикБезе про материнские платы.

Физический процессор состоит из трех основных компонентов, то что мы все видим, держа его в руке – термораспределительная металлическая крышка и текстолитовое основание с контактной площадкой. Внутри находится кремниевый кристалл, в котором находятся ядра, а иногда и не один, это может быть графическое ядро или еще один набор основных ядер – это самая сложная и дорогая часть процессора. Внутри кристалла процессора Intel core i7 находится 4 ядра, видеоядро, кэш память, контроллер оперативной памяти, DMI интерфейс для соединения с периферийными устройствами через чипсет материнской платы. А в процессорах AMD Epic и Threadripper находится сразу 4 кристалла по 4 ядра, но в тоже время процессор Intel i9 имеет 18 ядер упакованных в одном кристалле. Между кристаллом и термораспределительной крышкой есть слой термопасты, в топовых моделях используется припой. О термопастах и других термоинтрефейсках так же будет статья.

Обратная связь

Я ранее не занимался написанием подобного материала, знаю, что тут много разбирающих людей. Прошу в комментариях дать оценку, конструктивную критику или дополнения к материалу. Сообщить об ошибках и неточностях, или если что-то не понятно.

В планах сейчас написать пул статей по всем комплектующим, чтобы люди в информационный век лучше разбирались в компьютерах. Возможно, выйти с материалом на ютуб в дальнейшем.

Кэш-память процессора

Кэш-память играет важную роль. Без нее от высокой тактовой частоты процессора не было бы никакого проку. Кэш позволяет использовать в компьютере любую, даже самую «медленную» оперативную память, без ощутимого ущерба для его производительности.

О том, что такое кэш-память процессора, как она работает и какое влияние оказывает на быстродействие компьютера, читатель узнает из этой статьи.

Содержание статьи

Что такое кэш-память процессора

Решая любую задачу, процессор компьютера получает из оперативной памяти необходимые блоки информации. Обработав их, он записывает в память результаты вычислений и получает для обработки следующие блоки. Это продолжается, пока задача не будет выполнена.

Все упомянутые операции производятся на очень высокой скорости. Однако, даже самая быстрая оперативная память работает медленнее любого «неторопливого» процессора. Каждое считывание из нее информации и обратная ее запись отнимают много времени. В среднем, скорость работы оперативной памяти в 16 – 17 раз ниже скорости процессора.

Не смотря на такой дисбаланс, процессор не простаивает и не ожидает каждый раз, когда оперативная память «выдает» или «принимает» данные. Он почти всегда работает на максимальной скорости. И все благодаря наличию у него кэш-памяти.

Кэш-память процессора – это небольшая, но очень быстрая память. Она встроена в процессор и является своеобразным буфером, сглаживающим перебои в обмене данными с более медленной оперативной памятью. Кэш-память часто называют сверхоперативной памятью.

Кэш нужен не только для выравнивания дисбаланса скорости. Процессор обрабатывает данные более мелкими порциями, чем те, в которых они хранятся в оперативной памяти. Поэтому кэш-память играет еще и роль своеобразного места для «перепаковки» и временного хранения информации перед ее передачей процессору, а также возвращением результатов обработки в оперативную память.

Устройство кэш-памяти процессора

Система кэш-памяти процессора состоит из двух блоков — контроллера кэш-памяти и собственно самой кэш-памяти.

Контроллер кэш памяти

Контроллер кэш памяти – это устройство, управляющее содержанием кэша, получением необходимой информации из оперативной памяти, передачей ее процессору, а также возвращением в оперативную память результатов вычислений.

Когда ядро процессора обращается к контроллеру за какими-то данными, тот проверяет, есть ли эти данные в кэш-памяти. Если это так, ядру моментально отдается информация из кэша (происходит так называемое кэш-попадание).

В противном случае ядру приходится ожидать поступления данных из медленной оперативной памяти. Ситуация, когда в кэше не оказывается нужных данных, называется кэш-промахом.

Задача контроллера – сделать так, чтобы кэш-промахи происходили как можно реже, а в идеале – чтобы их не было вообще.

Размер кэша процессора по сравнению с размером оперативной памяти несоизмеримо мал. В нем может находиться лишь копия крошечной части данных, хранимых в оперативной памяти. Но, не смотря на это, контроллер допускает кэш-промахи не часто. Эффективность его работы определяется несколькими факторами:

• размером и структурой кэш-памяти (чем больше ресурсов имеет в своем распоряжении контроллер, тем ниже вероятность кэш-промаха);

• эффективностью алгоритмов, по которым контроллер определяет, какая именно информация понадобится процессору в следующий момент времени;

• сложностью и количеством задач, одновременно решаемых процессором. Чем сложнее задачи и чем их больше, тем чаще «ошибается» контроллер.

Кэш-память процессора

Кэш-память процессора изготавливают в виде микросхем статической памяти (англ. Static Random Access Memory, сокращенно — SRAM). По сравнению с другими типами памяти, статическая память обладает очень высокой скоростью работы.

Однако, эта скорость зависит также от объема конкретной микросхемы. Чем значительней объем микросхемы, тем сложнее обеспечить высокую скорость ее работы.

Учитывая указанную особенность, кэш-память процессора изготовляют в виде нескольких небольших блоков, называемых уровнями. В большинстве процессоров используется трехуровневая система кэша:

Кэш-память первого уровня или L1 (от англ. Level — уровень) – очень маленькая, но самая быстрая и наиболее важная микросхема памяти. Ни в одном процессоре ее объем не превышает нескольких десятков килобайт. Работает она без каких-либо задержек. В ней содержатся данные, которые чаще всего используются процессором.

Количество микросхем памяти L1 в процессоре, как правило, равно количеству его ядер. Каждое ядро имеет доступ только к своей микросхеме L1.

Кэш-память второго уровня (L2) немного медленнее кэш-памяти L1, но и объем ее более существенный (несколько сотен килобайт). Служит она для временного хранения важной информации, вероятность запроса которой ниже, чем у информации, находящейся в L1.

Кэш-память третьего уровня (L3) – еще более объемная, но и более медленная схема памяти. Тем не менее, она значительно быстрее оперативной памяти. Ее размер может достигать нескольких десятков мегабайт. В отличие от L1 и L2, она является общей для всех ядер процессора.

Уровень L3 служит для временного хранения важных данных с относительно низкой вероятностью запроса, а также для обеспечения взаимодействия ядер процессора между собой.

Встречаются также процессоры с двухуровневой кэш-памятью. В них L2 совмещает в себе функции L2 и L3.

Влияние кэш-памяти процессора на быстродействие компьютера

При выполнении запроса на предоставление данных ядру, контроллер памяти ищет их сначала в кэше первого уровня, затем — в кэше второго и третьего уровней.

По статистике, кэш-память первого уровня любого современного процессора обеспечивает до 90 % кэш-попаданий. Второй и третий уровни — еще 90% от того, что осталось. И только около 1 % всех запросов процессора заканчиваются кэш-промахами.

Указанные показатели касаются простых задач. С повышением нагрузки на процессор число кэш-промахов увеличивается.

Эффективность кэш-памяти процессора сводит к минимуму влияние скорости оперативной памяти на быстродействие компьютера. Например, компьютер одинаково хорошо будет работать с оперативной памятью 1066 МГц и 2400 МГц. При прочих равных условиях разница производительности в большинстве приложений не превысит 5%.

Читать еще:  Пико-проектор Aiptek A50P: презентации из кармана

Пытаясь оценить эффективность кэш-памяти, пользователи чаще всего ищут ответы на следующие вопросы:

Какая структура кэш-памяти лучше: двух- или трехуровневая?

Трехуровневая кэш-память более эффективна.

Чтобы определить, как сильно L3 влияет на работу процессора, сайтом Tom’s Hardware был проведен эксперимент. Заключался он в замере производительности процессоров Athlon II X4 и Phenom II X4. Оба процессора оснащены одинаковыми ядрами. Первый отличается от второго лишь отсутствием кэш-памяти L3 и более низкой тактовой частотой.

Приведя частоты обеих процессоров к одинаковому показателю, было установлено, что наличие кэш-памяти L3 повышает производительность процессора Phenom на 5,8 %. Но это средний показатель. В одних приложениях он был почти равен нулю (офисные программы), в других – достигал 8% и даже больше (компьютерные 3D игры, архиваторы и др.).

Как влияет размер кэша на производительность процессора?

Оценивая размер кэш-памяти, нужно учитывать характеристики процессора и круг решаемых им задач.

Кэш-память двуядерного процессора редко превышает 3 MB. Тем более, если его тактовая частота ниже 3 Ггц. Производители прекрасно понимают, что дальнейшее увеличение размера кэша такого процессора не принесет прироста производительности, зато существенно повысит его стоимость.

Другое дело высокочастотные 4-, 6- или даже 8-миядерные процессоры. Некоторые из них (например, Intel Core i7) поддерживают технологию Hyper Threading, обеспечивающую одновременное выполнение каждым ядром двух задач. Естественно, что потенциал таких процессоров не может быть раскрыт с маленьким кэшем. Поэтому его увеличение до 15 или даже 20 MB вполне оправдано.

В процессорах Intel алгоритм наполнения кэш-памяти построен по так называемой инклюзивной схеме, когда содержимое кэшей верхнего уровня (L1, L2) полностью или частично дублируется в кэше нижнего уровня (L3). Это в определенной степени уменьшает полезный объем его пространства. С другой стороны, инклюзивная схема позитивно сказывается на взаимодействии ядер процессора между собой.

В целом же, эксперименты свидетельствуют, что в среднестатистическом «домашнем» процессоре влияние размера кэша на производительность находится в пределах 10 %, и его вполне можно компенсировать, например, высокой частотой.

Эффект от большого кэша наиболее ощутим при использовании архиваторов, в 3D играх, во время кодирования видео. В «не тяжелых» же приложениях разница стремится к нулю (офисные программы, интернет-серфинг, работа с фотографиями, прослушивание музыки и др.).

Многоядерные процессоры с большим кэшем необходимы на компьютерах, предназначенных для выполнения многопоточных приложений, одновременного решения нескольких сложных задач.

Особенно актуально это для серверов с высокой посещаемостью. В некоторых высоконагружаемых серверах и суперкомпьютерах предусмотрена даже установка кэш-памяти четвертого уровня (L4). Изготавливается она в виде отдельных микросхем, подключаемых к материнской плате.

Как узнать размер кэш-памяти процессора?

Существуют специальные программы, предоставляющие подробную информацию о процессоре компьютера, в том числе и о его кэш-памяти. Одной из них является программа CPU-Z.

Программа не требует установки. После ее запуска нужно перейти на вкладку «Caches» (см. изображение).

На примере видно, что проверяемый процессор оснащен трехуровневой кэш-памятью. Размер кэша L3 у него составляет 3 MB, L2 – 512 KB (256×2), L1 – 128 KB (32×2+32×2).

Можно ли как-то увеличить кэш-память процессора?

Как уже было сказано в одном из предыдущих пунктов, возможность увеличения кэш-памяти процессора предусмотрена в некоторых серверах и суперкомпьютерах, путем ее подключения к материнской плате.

В домашних же или офисных компьютерах такая возможность отсутствует. Кэш-память является внутренней неотъемлемой частью процессора, имеет очень маленькие физические размеры и не подлежит замене. А на обычных материнских платах нет разъемов для подключения дополнительной кэш-памяти.

Одной из особенностей компьютеров на базе процессоров AMD, которой они выгодно отличаются от платформ Intel, является высокий уровень совместимости процессоров и материнских плат. У владельцев относительно не старых настольных систем на базе AMD есть высокие шансы безболезненно «прокачать» компьютер путем простой замены процессора на «камень» из более новой линейки или же флагман из предыдущей.

Если вы принадлежите к их числу и задались вопросом «апгрейда», эта небольшая табличка вам в помощь.

В таблицу можно одновременно добавить до 6 процессоров, выбрав их из списка (кнопка «Добавить процессор»). Всего доступно больше 2,5 тыс. процессоров Intel и AMD.

Пользователю предоставляется возможность в удобной форме сравнивать производительность процессоров в синтетических тестах, количество ядер, частоту, структуру и объем кэша, поддерживаемые типы оперативной памяти, скорость шины, а также другие их характеристики.

Дополнительные рекомендации по использованию таблицы можно найти внизу страницы.

В этой базе собраны подробные характеристики процессоров Intel и AMD. Она содержит спецификации около 2,7 тысяч десктопных, мобильных и серверных процессоров, начиная с первых Пентиумов и Атлонов и заканчивая последними моделями.

Информация систематизирована в алфавитном порядке и будет полезна всем, кто интересуется компьютерной техникой.

Таблица содержит информацию о почти 2 тыс. процессоров и будет весьма полезной людям, интересующимся компьютерным «железом». Положение каждого процессора в таблице определяется уровнем его быстродействия в синтетических тестах (расположены по убыванию).

Есть фильтр, отбирающий процессоры по производителю, модели, сокету, количеству ядер, наличию встроенного видеоядра и другим параметрам.

Для получения подробной информации о любом процессоре достаточно нажать на его название.

Люди обычно оценивают процессор по количеству ядер, тактовой частоте, объему кэша и других показателях, редко обращая внимание на поддерживаемые им технологии.

Отдельные из этих технологий нужны только для решения специфических заданий и в «домашнем» компьютере вряд ли когда-нибудь понадобятся. Наличие же других является непременным условием работы программ, необходимых для повседневного использования.

Так, полюбившийся многим браузер Google Chrome не работает без поддержки процессором SSE2. Инструкции AVX могут в разы ускорить обработку фото- и видеоконтента. А недавно один мой знакомый на достаточно быстром Phenom II (6 ядер) не смог запустить игру Mafia 3, поскольку его процессор не поддерживает инструкции SSE4.2.

Если аббревиатуры SSE, MMX, AVX, SIMD вам ни о чем не говорят и вы хотели бы разобраться в этом вопросе, изложенная здесь информация станет неплохим подспорьем.

Проверка стабильности работы центрального процессора требуется не часто. Как правило, такая необходимость возникает при приобретении компьютера, разгоне процессора (оверлокинге), при возникновении сбоев в работе компьютера, а также в некоторых других случаях.

В статье описан порядок проверки процессора при помощи программы Prime95, которая, по мнению многих экспертов и оверлокеров, является лучшим средством для этих целей.


ПОКАЗАТЬ ЕЩЕ

Кэш память и её предназначение в процессоре

Всем доброго времени суток. Сегодня мы постараемся растолковать вам такое понятие как кэш. Кэш память процессора – это сверхбыстрый массив обработки данных, скорость которого превышает показатели стандартной ОЗУ раз так в 16–17, если речь идет о DDR4.

Именно объем кэш-памяти позволяет ЦП работать на предельных скоростях, не дожидаясь, пока оперативная память обработает какие-либо данные и не отправит результаты готовых вычислений чипу для дальнейшей их обработки. Аналогичный принцип прослеживается в HDD, только там используется буфер на 8–128 МБ. Другое дело, что скорости гораздо ниже, но процесс работы аналогичен.

Что такое кэш процессора?

Как вообще происходит процесс вычислений? Все данные хранятся в оперативной памяти, которая предназначена для временного хранения важной пользовательской и системной информации. Процессор выбирает для себя определенное количество задач, которые загоняются в сверхбыстрый блок, именуемый кэш-памятью, и начинает заниматься своими прямыми обязанностями.

Результаты вычислений снова отправляются в ОЗУ, но уже в гораздо меньшем количестве (вместо тысячи значений на выходе получаем куда меньше), а на обработку берется новый массив. И так до тех пор, пока работа не будет сделана.

Скорость работы определяется эффективностью оперативной памяти. Но ни один современный модуль DDR4, включая оверклокерские решения с частотами под 4000 МГц, и рядом не стоял с возможностями самого чахлого процессора с его «медленным» КЭШем.

Все потому, что скорость работы ЦП превышает показатели работы ОЗУ в среднем раз в 15, а то и выше. И не смотрите только на параметры частоты, помимо них отличий хватает.В теории получается, что даже сверхмощные Intel Xeon и AMD Epyc вынуждены простаивать, но по факту оба серверных чипа работают на пределе возможностей. А все потому, что они набирают необходимое количество данных по величине кэша (вплоть до 60 и более МБ) и моментально обрабатывают данные. ОЗУ служит в качестве некоего склада, откуда черпаются массивы для вычислений. Эффективность вычислений компьютера возрастает и все довольны.

Краткий экскурс в историю

Первые упоминания о кэш-памяти датированы концом 80‑х годов. До этого времени скорость работы процессора и памяти были приблизительно одинаковой. Стремительное развитие чипов требовало придумать какой-нибудь «костыль», чтобы повысить уровень быстродействия ОЗУ, однако использовать сверхбыстрые чипы было очень затратно, а потому решились обойтись более экономичным вариантом – внедрением скоростного массива памяти в ЦП.

Впервые модуль кэш-памяти появился в Intel 80386. В то время задержки при работе DRAM колебались в пределах 120 наносекунд, в то время как более современный модуль SRAM сокращал время задержек до внушительных по тем временам 10 наносекунд. Примерная картина более наглядно продемонстрирована в противостоянии HDD против SSD.

Изначально кэш-память распаивалась прямиком на материнских платах, ввиду уровня техпроцесса того времени. Начиная с Intel 80486 8 кб памяти было внедрено непосредственно в кристалл процессора, что дополнительно увеличивало производительность и снижало площадь кристалла.

Данная технология расположения оставалась актуальной лишь до выхода Pentium MMX, после чего SRAM-память была заменена более прогрессивной SDRAM. Да и процессоры стали гораздо меньше, а потому надобность во внешних схемах отпала.

Уровни кэш-памяти

На маркировке современных ЦП, помимо тактовой частоты и количества потоков, можно встретить такое понятие как размер кэша 1,2 и 3 уровней. Как он определяется и на что влияет? Давайте разбираться простым языком.

  • Кэш первого уровня (L1) – самая важная и быстрая микросхема в архитектуре ЦП. Один процессор может вместить количество модулей, равных числу ядер. Примечательно, что микросхема может хранить в памяти самые востребованные и важные данные только со своего ядра. Объем массива зачастую ограничен показателем в 32–64 КБ.
  • Кэш второго уровня (L2) – падение скорости компенсируется увеличением объема буфера, который доходит до 256, а то и 512 КБ. Принцип действия такой же, как и у L1, а вот частота запроса к памяти ниже, ввиду хранения в ней менее приоритетных данных.
  • Кэш третьего уровня (L3) – самый медленный и объемный раздел среди всех перечисленных. И все равно этот массив гораздо быстрее оперативной памяти. Размер может достигать 20, и даже 60 МБ, если речь касается серверных чипов. Польза от массива огромна: он является ключевым звеном обмена данными между всеми ядрами системы. Без L3 все элементы чипа были бы разрознены.

В продаже можно встретить как двух- так и трехуровневую структуру памяти. Какая из них лучше? Если вы используете процессор лишь для офисных программ и казуальных игр, то никакой разницы не почувствуете. Если же система собирается с прицелом под сложные 3D-игры, архивацию, рендеринг и работу с графикой, то прирост в некоторых случаях будет колебаться от 5 до 10%.Кэш третьего уровня оправдан лишь в том случае, если вы намерены регулярно работать с многопоточными приложениями, требующими регулярные сложные расчеты. По этой причине в серверных моделях нередко используют кэш L3 больших объемов. Хотя бывают случаи, что и этого не хватает, а потому приходится дополнительно ставить так называемые модули L4, которые выглядят как отдельная микросхема, подключаемая к материнской плате.

Как узнать количество уровней и размер кэша на своем процессоре?

Начнем с того, что сделать это можно 3 способами:

  • через командную строку (только кэш L2 и L3);
  • путем поиска спецификаций в интернете;
  • с помощью сторонних утилит.

Если взять за основу тот факт, что у большинства процессоров L1 составляет 32 КБ, а L2 и L3 могут колебаться в широких пределах, последние 2 значения нам и нужны. Для их поиска открываем командную строку через «Пуск» (вводим значение «cmd» через строку поиска).

Далее необходимо прописать значение «wmic cpu get L2CacheSize, L3CacheSize».

Система покажет подозрительно большое значение для L2. Необходимо поделить его на количество ядер процессора и узнать итоговый результат.

Если вы собрались искать данные в сети, то для начала узнайте точное имя ЦП. Нажмите правой кнопкой по иконке «Мой компьютер» и выберите пункт «Свойства». В графе «Система» будет пункт «Процессор», который нам, собственно, нужен. Переписываете его название в тот же Google или Yandex и смотрите значение на сайтах. Для достоверной информации лучше выбирать официальные порталы производителя (Intel или AMD).Третий способ также не вызывает проблем, но требует установки дополнительного софта вроде GPU‑Z, AIDA64 и прочих утилит для изучения спецификаций камня. Вариант для любителей разгона и копошения в деталях.

Итоги

Теперь вы понимаете, что такое кэш-память, от чего зависит ее объем, и для каких целей используется сверхбыстрый массив данных. На данный момент наиболее интересными решениями на рынке в плане большого объема кэш-памяти, можно назвать устройства AMD Ryzen 5 и 7 с их 16 МБ L3.

В следующих статьях осветим такие темы как коэффициент умножения процессоров, пользу от встроенных графических чипов и не только. Следите за свежими публикациями и оставайтесь с нами. До новых встреч, пока.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector